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Abstract. As we work toward artificial general intelligence, it is clear
that we must try to imbue agents with faculties which ensure they are
trustworthy. We firmly believe that an AGI agent must be able to explain
it’s decision-making in order for it to be considered trustworthy. More
specifically, agents must be able to explain themselves in a way that is
both logically correct and understandable to humans. We take a first step
toward a system that can generate explanations which satisfy this pair
of conditions. We created the first model that can produce summaries of
modal-logic proofs using a transformer language model. We qualitatively
evaluated the model’s outputs on a held-out test set and found that the
logical content of the model’s explanations precisely matched the input
proofs in 60% of cases.
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1 Introduction

As AI agents continue to play a larger role in our everyday lives, the issue of
trust of AI systems is becoming more apparent. Moreover, as we work toward
artificial general intelligence (AGI), it is clear that we must try to imbue agents
with faculties which ensure they are trustworthy. While there is no one sufficient
condition for trust of an AGI, we firmly believe that the ability to explain it’s
decision-making is a necessary condition for trust in an AGI. More specifically,
agents must be able to explain themselves in a way that is both logically correct
and understandable to humans.

Many approaches to explainable AI secure one or the other of these two con-
ditions. DARPA’s Explainable AI Program has been/is focused primarily on the
latter. The goal is to produce systems that can explain machine-learning mod-
els in a human-understandable way. But since the core technology is machine-
learning-based, there is no guarantee that the decisions nor the explanations will
be formally correct with respect to some relevant formal system. Alternatively,
in much of our prior work we have taken a logic-based approach to AI enables
agents to explain their decisions in a formally correct (and verifiable) way [3,6,7].
Our AI agents do this by producing a formal proof; unfortunately, proofs are not
easily understood by humans who don’t have training in formal methods.
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In this paper, we take a first step toward a system that can generate expla-
nations which are both logically correct and understandable by humans. Specif-
ically, we created the first model which can produce summaries1 of modal-logic
proofs.

The rest of the paper is as follows. We first introduce the modal logic used
(§2), then the approach we took to generating natural-language explanations of
proofs from that logic (§3). Next, we provide and analyze sample outputs of the
system (§4). Finally, we discuss related work (§5) and conclude (§6).

2 Cognitive Calculi

A cognitive calculus is a multi-operator intensional logic with modal operators
that capture propositional attitudes of human cognition (e.g. K for “knows”,
B for “believes”). For the purposes of this paper, a cognitive calculus consists
essentially of two components:2 (1) multi-sorted nth-order logic3 with intension-
al/modal operators for modeling cognitive attitudes (e.g. K, B) and (2) inference
schemata that — in the tradition of proof-theoretic semantics [5] — fully express
the semantics of the modal operators. We note that the title is slightly inaccurate,
as a cognitive calculus is not exactly the same as a modal logic.4 Specifically, be-
cause of this last point: Whereas modal logics all have (typically model-theoretic)
semantics, cognitive calculi have no model-based semantics. The meaning of for-
mulae within a cognitive calculus is defined exclusively by the ways they can be
used in proofs and arguments, which is accomplished formally by the calculus’
inference schemata.

2.1 A Micro Calculus: µC

In the present paper, we utilize a micro cognitive calculus we refer to as µC. We
use a micro calculus, as opposed to a full-fledged cognitive calculus,5 in order to
simplify the challenging task at hand of generating explanations of modal-logic
proofs. That is to say, the only difference between a standard cognitive calculus

1 As we discuss in §5, there are systems that can create explanations of modal logic
proofs [4], but not summaries. That is, they can produce explanations which have a
one-to-one correspondence with the input proof, but cannot synthesize a summary
that highlights only the major components of the proof.

2 For a full exposition of exactly what a cognitive calculus is and isn’t, we point the
interested reader to Appendix A of [3].

3 Most cognitive calculi subsume first-order logic; some others include also second-,
third-, and higher-order logics. For reasons that will be explained later in the paper,
the cognitive calculus we utilize herein includes, of extensional logics, only zero-order
logic.

4 But of course the term modal logic is known and understood by a much wider
audience than cognitive calculus, which is why we used the former term in the title.

5 Such as the Deontic Cognitive Event Calculus (DCEC) and its inductive counterpart
(IDCEC). The interested reader is referred to [3] which utilizes both of these calculi.
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and a micro calculus is the relative size in terms of syntactic forms and inference
schemata.

In general, a cognitive calculus consists of two main pieces: a signature and
a set of inference schemata. The signature of a cognitive calculus has four com-
ponents: (1) a set of sorts, (2) a set of function signatures, (3) a grammar for
terms, and (4) a grammar for formulae. Note that each of these components
builds upon a pre-existing core.6 The sorts and function signatures build upon
the standard, extensional event calculus,7 [8] and the terms and syntactic forms
(generally) build upon first-order logic.8

Signature The signature contains three sorts: Agent, for specifying human/ar-
tificial cognizers within modal formulae; Moment, for specifying time points;
and Formula, for specifying any well-formed formula in the calculus. Next, the
types: variables, constants, and functions. Finally, the syntactic forms cover the
standard relations of propositional logic, and modal operators for Perception
(traditionally not included in so-called “BDI” logics), Belief, and Desire.

µC Signature

S ::= Agent | Moment | Formula

t ::= x : S | c : S | f(t1, . . . , tn)
ϕ ::= {¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | P(a, ϕ) | B(a, ϕ) | D(a, ϕ)

Inference Schemata The calculus contains four inference schemata in the
natural-deduction tradition: I1 enables an agent to infer a belief in any formula
ϕ which it perceives. I2 enables an agent to perform And Elimination on any
conjunction it believes holds. In the same way, I3 and I4 enable an agent to use
Or Introduction and Implication Elimination within beliefs.

µC Inference Schemata

P(a, t, ϕ)

B(a, t, ϕ)
[I1]

B(a, t, ϕ ∧ ψ)
B(a, t, ϕ)

[I2]
B(a, t, ϕ)

B(a, t, ϕ ∨ ψ)
[I3]

B(a, t, ϕ→ ψ) B(a, t, ϕ)

B(a, t, ψ)
[I4]

6 For brevity, the pre-existing core of the function signatures is excluded as we will
not need them for the problems presented herein.

7 Other calculi (e.g. the situation calculus) for modeling commonsense and physical
reasoning can be easily switched out in-place of the event calculus.

8 Cognitive calculi can be built off of second-, third-, and higher-order logics. As
we show shortly, µC builds off of zero-order logic (that is, propositional logic with
predicates and function symbols, but no quantifiers).
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3 NLG via Transformer Language Models

While we do not assert that transformer language models are unproblematic,9
their impressive ability to quickly generate reasonable-looking natural-language
text is, at the time of this writing, unmatched by any other technology. Hence
our model to convert formal proofs into natural-language explanations utilizes a
transformer language model.10

Specifically, we fine-tuned Pegasus [11] on a dataset of µC proofs and corre-
sponding explanations, and evaluated it on a held-out dataset. Next, we discuss
the reasoning behind the choices of Pegasus and µC for this work.

3.1 Pegasus

We selected the Pegasus transformer model as it was designed to perform well
at abstractive summarization. Briefly, whereas extractive summarization simply
extracts a proper subset of the input verbatim to synthesize a summary, ab-
stractive summarization attempts to create a coherent summary that contains
words/phrases that did not appear in the source text. This approach to sum-
marization was necessary for our task, since we did not want to simply pick out
pieces of the proofs for the summaries, but rather summarize the key points in
English. Our task would be more accurately categorized as “summarization and
translation.” But since there are no translation models pre-trained on this type
of data, we determined that an abstractive summarization model was the best
available option.

3.2 µC & The Proof Domain

We selected µC as the cognitive calculus within which proofs would be created for
this experiment largely for its simplicity. Whereas some cognitive calculi contain
many more complex inference schemata including e.g. meta-logical statements
about provability, µC contains only four inference schemata that can be easily
explained in English. For example, I1 allows an agent a to infer a belief in some
formula ϕ which it perceives.11 This enabled the creation of proofs involving
several inferences that could be succinctly summarized in a few sentences.

Similarly, we selected the proof domain — the weather — in order to en-
able the quick generation of proofs which are logically correct and correspond-
ing explanations which are sensible. We included predicates for simple types of

9 The interested reader is referred to [2] for a thorough analysis of the environmental,
financial, and societal concerns surrounding transformers.

10 We certainly do not believe transformers are the only method by which this gen-
eration of proof explanations can be achieved. In fact, we expect that methods of
natural-language generation which incorporate symbolic reasoning would almost cer-
tainly provide better assurances that the resulting explanations match the logical
content of the proof. We discuss this more in §6.

11 See §2.1.
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weather (e.g. Raining, Foggy), road conditions which could be caused by the
weather (e.g. Slippery, ReducedVisibility), and items one may want for cer-
tain weather (e.g. rainboots, umbrella). Example proofs and explanations are
given in §4.

3.3 Model Fine-Tuning

We fine-tuned the Pegasus transformer on 20 proof-explanation pairs, holding
out a set of 10 for evaluation. We note that the dataset is relatively small for
a transformer training task for several reasons, but primarily because the pairs
had to be engineered by hand, which was labor-intensive. The evaluation was
also performed by hand, which will be discussed further in the following section.

Fortunately, because transformers are pre-trained on large datasets, we ex-
pected that we could be successful fine-tuning with a relatively small dataset.
For details on the implementation of fine-tuning process, see Appendix A.

4 Evaluation

We took a qualitative approach to evaluating the results of our fine-tuned model.
Statistical metrics for measuring the similarity of the model’s output to the
ground truth aren’t very meaningful in this case, as they fail to capture whether
the logical reasoning content of the outputs are similar. For example, “You should
bring an umbrella today because it is raining” and “You should bring an um-
brella today because it is not raining” are very close syntactically, but the latter
sentence doesn’t exhibit valid reasoning (assuming common-sense understand-
ing of the involved properties). Hence we evaluated the output qualitatively by
partitioning it into the following trichotomy:

1. The output logically corresponds to the input proof.
2. The output doesn’t logically correspond, but is still logically correct.
3. The output neither logically corresponds to the input proof nor is logically

correct.

By “logical correspondence,” we mean that the logical content of the summary
is consistent with that in the proof. Since our goal is to generate summaries (as
opposed to complete explanations), the model’s output need not explain each
individual step of the proof. However, it may not include language that does not
have a formal correlate in the proof.

By “logical correctness,” we mean that each step within the summary corre-
sponds to an inference schema (or chain of inference schemata) in the cognitive
calculus. Again, since our model is summarizing proofs, the explanation need
not include a natural-language correlate of each step in the proof, but it cannot
include language that is not sanctioned by some subset of the inference schemata.

The present page limit precludes inclusion of the full set of output on the test
set. Here we show only a few noteworthy results, both positive and negative.12

12 Newlines and indentation have been added for readability.
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4.1 Example #1

Input:
PROOF: (Believes! a now (Slippery now road))

VIA MODUS PONENS IN BELIEF:
(Believes! a now (implies (or (Raining now) (Snowing now))

(Slippery now road))),
(Believes! a now (Raining now))

VIA GIVEN:
(Believes! a now (implies (or (Raining now) (Snowing now))

(Slippery now road)))
AND:
(Believes! a now (or (Raining now) (Snowing now)))

VIA DISJUNCTION INTRO IN BELIEF:
(Believes! a now (or (Raining now) (Snowing now)))

VIA GIVEN: (Believes! a now (Raining now))

Human-Generated Output:
The agent believes the road is slippery. This is because the agent
believes if it is raining or snowing then the road is slippery, and
the agent believes it is raining.

Machine-Generated Output:
The agent believes it is slippery on the road. This is because the agent
believes it is raining or snowing on the road.

The machine’s output is judged excellent for two reasons: (1) it logically
corresponds to the input proof; and (2) it is more concise than the human-
generated/ground-truth explanation, without excluding any content necessary
for a person to understand.

4.2 Example #2

Input:
PROOF: (Believes! a now (Slippery now road))

VIA MODUS PONENS IN BELIEF:
(Believes! a now (implies (or (Raining now) (Snowing now))

(Slippery now road))),
(Believes! a now (or (Raining now) (Snowing now)))

VIA GIVEN:
(Believes! a now (implies (or (Raining now) (Snowing now))

(Slippery now road)))
AND:
(Believes! a now (or (Raining now) (Snowing now)))

VIA DISJUNCTION INTRO IN BELIEF:
(Believes! a now (Snowing now))

VIA GIVEN: (Believes! a now (Snowing now))

Human-Generated Output:
The agent believes the road is slippery. This is because the agent
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believes if it is raining or snowing then the road is slippery, and
the agent believes it is snowing.

Machine-Generated Output:
The agent believes it is slippery on the road. This is because the agent
believes if it is raining or snowing then it is slippery on the road, and
the agent believes it is raining or snowing.

In this case the machine’s output is slightly longer than the ground truth but
still logically corresponds to the input proof.

4.3 Example #3

Input:
PROOF: (Desires! a now (or (Umbrella now) (RainJacket now)))

VIA MODUS PONENS IN BELIEF:
(Believes! a now (implies (and (Raining now) (not (Windy now)))

(Desires! a now (or (Umbrella now)
(RainJacket now))))),

(Believes! a now (and (Raining now) (not (Windy now))))
VIA GIVEN:
(Believes! a now (implies (and (Raining now) (not (Windy now)))

(Desires! a now (or (Umbrella now)
(RainJacket now)))))

AND:
(Believes! a now (and (Raining now) (not (Windy now))))

VIA CONJUNCTION INTRO IN BELIEF:
(Believes! a now (Raining now)),
(Believes! a now (not (Windy now)))

VIA GIVEN: (Believes! a now (Raining now))
AND GIVEN: (Believes! a now (not (Windy now)))

Human-Generated Output:
The agent desires an umbrella or a rainjacket. This is because the agent
believes if it is raining and not windy then it should hold this desire,
and the agent believes it is rainy and not windy.

Machine-Generated Output:
The agent desires umbrellas and rain jackets. This is because the agent
believes if it is raining and not windy then it should hold this desire,
and the agent believes it is raining and not windy.

The machine’s output is almost identical to the ground truth, but there is
one critical difference: it should be “umbrellas or rain jackets,” not “umbrellas
and rain jackets.” Hence while this output looks reasonable, it does not logically
correspond to the input proof nor is it logically correct.
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4.4 Example #4

Input:
PROOF: (Believes! a now (Rainbow now))

VIA MODUS PONENS IN BELIEF:
(Believes! a now (implies (and (Raining before) (Sunny now))

(Rainbow now))),
(Believes! a now (and (Raining before) (Sunny now)))

VIA GIVEN:
(Believes! a now (implies (and (Raining before) (Sunny now))

(Rainbow now)))
AND:
(Believes! a now (and (Raining before) (Sunny now)))

VIA CONJUNCTION INTRO IN BELIEF:
(Believes! a now (Raining before)),
(Believes! a now (Sunny now))

VIA GIVEN: (Believes! a now (Raining before))
AND GIVEN: (Believes! a now (Sunny now)))

Human-Generated Output:
The agent believes there is a rainbow now. This is because the agent
believes if it rains first and is sunny second then there will be a
rainbow, and the agent believes the premise.

Machine-Generated Output:
The agent believes it is sunny and raining. This is because the agent
believes if it is sunny and raining then it should hold this belief,
and the agent believes it is sunny and raining.

Here the machine’s output is logically correct (albeit tautologically), but does
not at all logically correspond to the input proof.

4.5 Overall

Out of the 10 held-out test examples, six logically corresponded to the input
proof (60%), two did not logically correspond to the input but were logically
correct (20%), and three neither logically corresponded nor were logically correct
(30%). While we do not deny that there is plenty of room for improvement, our
model is the first (to the authors’ knowledge) able to generate summaries of
modal-logic proofs. Next, we discuss relevant prior work in this space.

5 Related Work

To the author’s knowledge, there is no prior work using transformer language
models to generate explanations of proofs in any logic, let alone a logic as highly-
expressive as µC. There is, however, some prior work on generating explanations
of proofs using other methods.
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Felty & Hager [4] presented a method for generating natural-language ex-
planations of modal-logic proofs. They essentially hard-code natural-language
templates for every inference rule in their logic. Thus the technique cannot be
generalized to new inference rules or logics without hard-coding new templates.
Additionally, this creates a one-to-one correspondence between the proof and
explanation. While this may be desired in some cases, this method is incapable
of generating summaries of proofs (= explanations that leave out minor details
in an effort to demonstrate “big picture” understanding).

Alexoudi et al. [1] developed a method for producing summaries of mathe-
matical proofs. It used a submodule to extract only the mathematically “interest-
ing” proof steps in order to create a higher-quality summary. However, again, the
natural-language translation boils down to a hard-coded transformation. For ex-
ample, the term “primitive_ind” is translated to the phrase “one-step structural
induction on” [1]. Also, as the focus in this work was on generating summaries
of mathematical proofs,13 they use standard first-order logic, and hence their
method doesn’t address generating summaries of proofs which contain modal
operators.

While our use of transformers introduces the possibility that the resulting
explanations may not precisely logically correspond to the input proof, the lin-
guistic content is much higher quality than prior work. Alexoudi et al. specifically
mention this drawback in their work, noting that “In certain cases the template
mapping produces minor grammatical errors” [1]. We note that all of the ex-
planations generated by our model were grammatically correct. Of course, the
ultimate goal of our research is a model which guarantees logical correspondence
and grammatical correctness. We discuss future work in this direction in the
following section.

6 Conclusion

We firmly believe that for AGI agents to be considered trustworthy by most
people, these agents will need the capability to explain their decision-making
in a way that is both logically correct and understandable by humans. In this
paper, we have taken a first step in that direction. We created the first model
which can generate natural-language summaries of modal-logic proofs. Of the
summaries generated from proofs in the test set, 60% logically corresponded
to the input proof, and all summaries were grammatically correct and overall
linguistically coherent. Nonetheless, clearly there are many needed, subsequent
steps; we mention two general directions now.

13 They state that their goal was to produce summaries of proofs similar to what
would be seen in “mathematical textbooks.” While they didn’t specify any sub-
fields of mathematics, nor the level of rigor (e.g. high-school, undergraduate, or
graduate textbooks) they intended their method for, the examples in the paper all
involve mathematical-induction proofs of arithmetic properties, e.g. commutativity
of addition.
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First, our model was trained and tested on a single proof domain, with rela-
tively simple proofs, within a relatively simple cognitive calculus. An AGI agent
should be able to generate explanations of proofs in a wide variety of domains
which it may not have encountered before. New methods may be needed to
achieve this, as well as to enable such an agent to generate explanations of more
complex proofs in cognitive calculi with more and deeper modalities and infer-
ence schemata.

Second, while using a transformer enabled our model to generate text that
was linguistically coherent, one significant drawback is that there is no guarantee
the logical content of the explanation matches that of the proof. That is, the
explanation may be syntactically correct English, but not match the meaning
of the proof.14 We see two possible directions in this space. First, one could
imbue the transformer with some type of rule-based system that ensures that
the text it produces corresponds with the logical content of the proof. Second,
one could take a different approach to language generation entirely. Specifically,
a knowledge-based approach to language generation (e.g. [9,10]) could ensure
that outputs are both logically and linguistically sensible.

Acknowledgements This research is partially enabled by support from ONR
and AFOSR (Award # FA9550-17-1-0191).

A Fine-Tuning & Evaluation Implementation

We used the Hugging Face Transformers library to access Pegasus, fine-tune the
model, and evaluate it. Our fork of the model (https://github.com/mjgiancol
a/transformers) includes scripts for fine-tuning with the parameters we set to
enable reproduction of our results (https://github.com/mjgiancola/transforme
rs/tree/main/examples/research_projects/proof-nlg).

The script fine_tune_pegasus.sh runs the fine-tuning process. It is con-
figured to generate the fine-tuned model’s predictions on the test set after fine-
tuning is completed. Additionally, the script get_predictions_from_fine_tu
ned.py loads the fine-tuned model and outputs pretty-printed results, including
the input (a proof), the ground truth output (a human-generated explanation),
and the model’s output.

14 We note that, while this is a significant drawback, which we shortly address as
pressing future work, we note that AI agents which utilize the type of technology
presented herein (i.e. a cognitive calculus for reasoning and a transformer for NLG)
would still enact logically correct decision-making, even if its explanation wasn’t
correct. That is, the agent’s behavior would still be bound by what it could prove
via the calculus’ inference schemata.

https://github.com/mjgiancola/transformers
https://github.com/mjgiancola/transformers
https://github.com/mjgiancola/transformers/tree/main/examples/research_projects/proof-nlg
https://github.com/mjgiancola/transformers/tree/main/examples/research_projects/proof-nlg
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