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Abstract
Proficiency in math among U.S. pre-college students is
overall undeniably low, as shown by reliable and long-
established empirical data (e.g., PISA 2015); this is espe-
cially true for students in lower-socioeconomic levels. We
herein present some of the data in question at the U.S. State
level; explain the math tests that generate said data; encap-
sulate the three parts of the particular paradigm we bring to
bear to address the crisis; describe in a bit more detail how
the artificial agents in this paradigm operate; make a few
remarks regarding related work; anticipate and rebut two in-
evitable objections; and wrap up with comments regarding
next steps.

The Problem, Encapsulated
Proficiency in math among U.S. pre-college students is
overall undeniably low, as shown by reliable, longstand-
ing empirical data collected on an ongoing basis; this is
especially true, and distressingly so, for students in lower-
socioeconomic levels. For example, the standing of U.S.
youth in math, as measured against other nations and
economies, is given in the PISA series; see e.g. PISA 2015.
In the case of data internal to the U.S., i.e. data at the State
level, we note and exploit the convenient fact that New
York State (NYS), specifically its Department of Educa-
tion (NYSED), annually tests the mathematical capability
of Grade 3–12 students against “common-core” content in
mathematics, and provides an informative, web-based inter-
active system for viewing assessment data. NYS has five
(known as the “Big Five”) urban school districts, and in
the case for instance of Big-Five-member Rochester Central
School District (RCSD) in 2019, only 13% of Grades 3–8
students were proficient in math, and in fact 68% of these
students scored at Level 1 on their math tests — this being a
level that no test-taker, however scant their progress, can fail
to achieve. In stark contrast, in districts where residential
real-estate is very expensive, and correspondingly the vast
majority of K–12 students hail from households of a high
socio-economic level, math proficiency is markedly higher.
For example, in 2019, overall, 88% of students in Scars-
dale’s school district were proficient in math. The racial

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

composition of public school districts is shown in NYSED
data, and for economy we simply mention here that the
lower socio-economic levels seen in the Big Five do unfor-
tunately correlate highly with higher percentages of people
of color.

Such inequity is profoundly disturbing. After all, it is
extremely difficult to see how youth from lower socio-
economic levels will have a decent chance to avoid poverty
in an economy increasingly driven by mathematics, compu-
tation, and specifically by the development of and collabo-
ration with AI/ML itself. To solve the problem, we propose
bringing to bear a distinctive class of artificial agents that
can augment the conventional math education of U.S. stu-
dents, in particular math education tied tightly to common-
core content.

Plan of the Extended Abstract
The sequel will unfold as follows. We begin in earnest by
presenting some of the depressing data in question; then ex-
plain the math tests that generate said data; next, explain the
three parts of the particular paradigm we bring to bear to
address the crisis; describe in a bit more detail how the arti-
ficial agents in this paradigm that we envisage will operate;
anticipate and rebut two inevitable objections; make a some
quick comments about related work; and wrap up with re-
marks regarding next steps.

The Math Tests in Question
Content to be Taught: Common-Core Math
New York State’s K–12 public-education system conforms
to common-core standards, and Grade 4 mathematics is no
exception; these standards are set out in natural-language
in (New York State Education Department 2012). Space
doesn’t permit us to recapitulate the standards in question,
obviously; we shall need to rest content with conveying to
the reader a decent sense of the standards, in order to inform
our key claim (below) that these standards are all capturable1

in computational formal logic. Specifically, common-core
standards are captured by a set CCn of formulae expressed
in the formal language L of some formal logic L . The

1The concept of capture is a technical one in formal logic, the
explanation of which is out of scope here. A nice exposition is pro-
vided in (Smith 2013).

https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf
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Figure 1: Sample Grade-3 Math Question Note that there is
more than one way to solve this problem. Specifically, there
are two different pairs of triangles that one can use/imagine
in order to select the answer α. Accordingly, G3Solver (see
below), implemented, will find two different minimal proofs
automatically that establish 22 = α.

Figure 2: Grade-4 NYS Math-Test Question Calling for
Work to be Shown What the student provides as a justifi-
cation here is understood to be a proof (or at least an ar-
gument) for the selected option, and is assessed by our AI
technology.

subscript n here refers to grade level; so e.g. CC3 are the
common-core standards for Grade 3, captured. Obviously
the collection of all common-core standard, which the Mas-
ter Method has as a static resource, is

12⋃

i=1

CCi.

Sample NYS Math Questions

The specific math tests with which we are concerned are,
with minor variation, ubiquitous across public K–12 educa-
tion in the United States, but we key in on these tests as
they are developed, administered, and statistically analyzed
in New York State (NYS). As a first example, a Grade-3
question is shown in Figure 1. A harder, more interesting
problem is this Grade-4 math question in NYS shown in Fig-
ure 2.

Extending the Questions: Justification
While such tests as created and provided by NYSED do not
include requests to test-takers that they provide justifications
(some questions do request that “work” be shown), in our
approach to AI-infused math education in the early grades
we believe it’s important that students attempt to provide jus-
tifications that are precursors to the proofs that will eventu-
ally sometimes be requested in high-school (and if not there,
then certainly in college-level mathematics).

Our Three-Part Paradigm
In general, there are three main parts to our paradigm. First,
we view tests as being at the heart of what AI is, and how it
should be pursued, concretely. Second, we specifically pur-
sue logic-based (or as we prefer to say, logicist AI (and here,
our brand of logicist AI has six important elements). And
third, we specifically have invented a class of artificial agents
that have (at least least we see it) some very promising at-
tributes when, as is the case herein, the domain of appli-
cation of pedagogy. We now briefly describe each of these
three parts of our paradigm, in sequence.

Psychometric AI
The first part of the paradigm we bring to bear upon the math
gap in question is Psychometric AI (PAI), first introduced in
(Bringsjord and Schimanski 2003). The basic idea underly-
ing PAI is that attempts to build intelligent artifacts should
consist in concrete attempts to artifacts that can excel on
tests of cognitive ability. The fit between PAI and an attempt
to engineer artificial agents able to issue tests and process
performance on them is doubtless clear to the reader.

Logicist AI: Our Brand Thereof, & Its Six Key
Elements
What is AI? And Specifically Logic-based/Logicist AI?
We affirm the uncontroversial, orthodox conception that the
discipline of AI consists in the attempt to understand, de-
sign, and implement artificial agents, i.e. entities that receive
percepts from the environment in which they are in, and pro-
duce as outputs actions performed in this environment. This
conception is firmly at the heart of all comprehensive and
authoritative accounts of AI we are aware of; see e.g. (Rus-
sell and Norvig 2020, Bringsjord and Govindarajulu 2018,
Luger 2008). But what mediates between percepts and ac-
tions in a given artificial agent a? From a high-level per-
spective, there is no loss of generality here in stipulating that
the percept-to-action mapping corresponds to some Turing-
computable function, and that what mediates the inputs and
outputs is then naturally said to be a Turing machine m (or
an equivalent machine, e.g. a Register machine) that com-
putes function. Typically, the construction of a given artifi-
cial agent will then consist in no small part in the engineer-
ing of a computer program p corresponding to such a Turing
machine m. The picture so far can be encapsulated if we
write:

am/p : P 7→ A,
where of course P is a set of percepts andA a set of actions.



Now how do we specifically define logicist (or logic-
based) AI, which is the brand of AI we pursue (at least in
our approach to AI-augmented education in the formal sci-
ences)? The answer is straightforward and efficient: We sim-
ply specify that instead of any Turing-level machinem in the
foregoing, the machine in question is an automated reasoner
r; this yields:

ar : P 7→ A,
which directly reflects our work, since it is automated rea-
soning that is the backbone of our artificial pedagogical
agents. Below, when we describe the algorithm G3Solver,
and demonstrate it in action, it will be seen that we are deal-
ing with an agent of the type ar.

We turn now to a rapid enumeration of the six key ele-
ments in our brand of logicist AI for seeking to meet the
education challenge at hand.

Element #1: Cognitive Calculi Essentially, a (deductive)
cognitive calculus is a quantified multi-operator modal logic
such that its: proof/argument theory is specified in “nat-
ural deduction” form (traceable back to (Gentzen 1935,
Fitch 1952)), operators cover all or most of human-level
cognition (e.g., believing, knowing, perceiving, communi-
cating, and also obligations, etc.), and semantics is exclu-
sively proof-theoretic in nature.2 Proof-theoretic semantics
eschews model-theoretic and possible-worlds semantics in
favor of the basic idea that meaning is provided to formulae
and their constituents solely by virtue of the nature of proofs
in which these things appear.3

In the present work, we specifically utilize elements of
the Deontic Cognitive Event Calculus (DCEC) to model the
perceptions and beliefs of students, denoted B and P respec-
tively. A dialect of DCEC is specified and used in (Govin-
darajulu and Bringsjord 2017). can be thought of roughly
as a quantified multi-operator modal logic with all of the in-
troduction and elimination rules for first-order logic, plus a
host of inference schemata to cover its many modal opera-
tors.

Element #2: Automated Reasoning for Cognitive Cal-
culi: ShadowProver An automated reasoner for DCEC
— ShadowProver (Govindarajulu, Bringsjord, and Peveler
2019) — has been created and is under active development.
Soundness proofs for cognitive calculi have been obtained
but are out of scope.

Element #3: Visual Logics and Associated Automated
Reasoning This third element of the kind of logicist AI we
are using in order to address the K–12 “math gap” between
the economically advantaged and disadvantaged is an abil-
ity for artificial agents to represent and reason over not just
symbolic content, but pictorial content as well. More specif-
ically, we use the Vivid framework introduced in (Arkoudas
and Bringsjord 2009), and descendants thereof. This formal

2For specification of the formal language & proof theory of a
the particular deductive cognitive calculusDCEC we direct readers
to e.g. (Govindarajulu and Bringsjord 2017).

3For more on proof-theoretic semantics see (Dummett 1981,
1991, Gentzen 1935, Prawitz 1972).

science and corresponding automated-reasoning technology
is beyond the scope of the present short abstract, and must be
left for another time, but all alert readers will have noticed
from even a cursory look at the questions shown in Figures
1 and 2 that in the tests in question, diagrams play an impor-
tant role.

Element #4: Background Axiom Systems for Mathe-
matics Itself One of the remarkable turns in professional
mathematics and logic, seen at the end of the 20th century,
and accelerating greatly in the 21st century, has been to what
is known as {reverse mathematics}. In a word, reverse math-
ematics is devoted to proving what suffices to obtain results
in the familiar branches of mathematics; here, the “what”
specifically refers to what axioms expressed in what for-
mal logic suffice to formally prove the results in question.
The current authoritative introduction to reverse mathemat-
ics, which shows that number theory expressed in second-
order logic is remarkably powerful, is (Simpson 2010). In
our approach, we use automated reasoners able to process
such fundamental information, in order to generate tests. In
particular, for Grade 3 and Grade 4 mathematics and the
NYS tests in question, axiom systems of limited scope for
arithmetic suffice. For instance, mathematical induction is
not needed. So-called Robinson Arithmetic, sometimes just
denoted by Q, is sufficient; Q is nicely introduced and ex-
plained in (Boolos, Burgess, and Jeffrey 2003).

Element #5: Capturing What is to Be Learned in an Ax-
iom System In the case at hand, what is to be learned, as
we have said above, are the things listed in the common-core
learning standards for public K–12 mathematics education,
as described by New York State. In our approach, these stan-
dards, which are presented informally in English by New
York State, are captured in formal logic. We leave aside here
for economy how this capture is accomplished, and the for-
mulae that result from doing so.

Element #6: NLP (NLG & NLU) (and formal semantics)
of Our Logicist Sort We do not have space to explain
how both natural language generation (NLG) and natural
language understanding (NLU) is handled. In general, we
use direct passing from formal logic to English constrained
by a formal grammar for NLU, and NLG is direct seman-
tic parsing from English to formulae in our logics. Our ap-
proach to the semantics of natural language is entirely proof-
theoretic (not model-based/Montagovian). A nice introduc-
tion to proof-theoretic semantics, including its connection to
and use for natural language, see (Francez 2015).

The “TIPPAE” Class of Artificial Agents
TIPPAE, as a paradigm, is a class of artificial intelligences
that are enabled by cognitive logics to offer a continuous as-
sistive experience though multiple heterogeneous hardware
environments for the user whose education they are enhanc-
ing. They are designed to accomplish this by fulfilling the
properties of their namesake, TIPPAE (Teleportative Intel-
ligent Personalized Persistent Agents for Education). These
properties, formalized and verified through the use of logic
based artificial intelligence, aim to create agents that are not



only helpful to their user’s education, but open avenues for
the potential of human-computer friendship. (Angel, Govin-
darajulu, and Bringsjord 2019) In brief, the properties of this
paradigm can be described as thus: “Teleportative” repre-
sents that need of the agent to be able to teleport, also known
as migrate, through many potential hardware environments
while giving a believable impression of being one, uninter-
rupted AI identity. Consider, as a hypothetical example, an
agent that can start a conversation about a multiplication as
a graphical interface on a desktop computer, then continue
that conversation via text messages while the user is in tran-
sit, then finish the conversation via a toy robot at the user’s
home. “Intelligent” represents the need of the agent to make
reasonable and logical decisions about how it will assist its
user. The agent needs a logical understanding of the peda-
gogical domain of knowledge that it is working to tutor its
user toward better mastery. “Personalized” indicates that the
agent can provide individualized assistance that is tailored to
that particular user. For example, if the agent detects that the
user has a specific misunderstanding in elementary mathe-
matics, carrying the one during addition for example, then
the agent can then dispense assistance that relates to that
specific misunderstanding. “Persistent” indicates the agent’s
ability to continuously assist a user over longer periods of
time and across incremental pedagogical subject matters.
After all, an agent that can continuously offer personalized
assistance throughout multiple school years will naturally
have a more thorough understanding of a student’s mastery
over the subject matter than an agent that resets its knowl-
edge every year. “Agent for Education” denotes the continu-
ing commitment of those engineering said assistants to keep
in mind the myriad real world and practical concerns that
come with working in education such as privacy, security,
opportunity distribution, and many, many more.

The Operation of our TIPPAE Agent Sketched
The Overarching Architecture
The overarching architecture of the TIPPAE agent we have
invented, and are gradually implementing, part by part, is
shown in Figure 3; this architecture we refer to as ‘The
Master Method.’ The caption for this figure, given space
constraints, must suffice here. Note that the G3Solver algo-
rithm, which we present and demonstrate below, is part of
The Master Method, and indeed a key part thereof, because
generation of tests T (as a series of questions Qi) are veri-
fied as correct, and measured for difficulty, by ensuring that
(as) G3Solver can find a proof π of the answer/key α, and
that (b) a minimal proof is of the appropriate length (where
minimal proof length gives us a way to gauge difficulty of a
given question Qi; details of this way are out of scope here).

Demonstration
Our demonstration is of a key sub-algorithm for the “Master
Method” shown in Figure 3. This sub-algorithm, G3Solver,
is shown in Figure 4, and the pseudo-code provided therein,
should be for the most part self-explanatory, but we now give
a quick summary in prose:

NLG

NLU

student

T := hQ1, Q2, Q3, . . . , Qki
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<latexit sha1_base64="Trl04Corczb24Cj9modot/Qt6es=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZdFNy4r9AXToWTSTBuaSYYkI5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vp7SxubW9U96t7O0fHB5Vj0+6WqaK0A6RXKp+iDXlTNCOYYbTfqIojkNOe+H0Pvd7T1RpJkXbzBIaxHgsWMQINlbyBzE2E4J51p4PqzW37i6A1olXkBoUaA2rX4ORJGlMhSEca+17bmKCDCvDCKfzyiDVNMFkisfUt1TgmOogW0SeowurjFAklX3CoIX6eyPDsdazOLSTeUS96uXif56fmug2yJhIUkMFWX4UpRwZifL70YgpSgyfWYKJYjYrIhOsMDG2pYotwVs9eZ10r+peo3792Kg174o6ynAG53AJHtxAEx6gBR0gIOEZXuHNMc6L8+58LEdLTrFzCn/gfP4Aj8WRcg==</latexit>

Tnatlang

<latexit sha1_base64="fARaE1We6lO2UHyBukjaUjmR/w4=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyWRii6LblxW6AvaEG6mk3boZBJmJkIJBX/FjQtF3Pod7vwbJ20W2npg4HDOvdwzJ0g4U9pxvq3S2vrG5lZ5u7Kzu7d/YB8edVScSkLbJOax7AWgKGeCtjXTnPYSSSEKOO0Gk7vc7z5SqVgsWnqaUC+CkWAhI6CN5Nsngwj0mADPWjM/E6A5iNHMt6tOzZkDrxK3IFVUoOnbX4NhTNKICk04KNV3nUR7GUjNCKezyiBVNAEygRHtGyogosrL5vFn+NwoQxzG0jyh8Vz9vZFBpNQ0CsxkHlYte7n4n9dPdXjjZUwkqaaCLA6FKcc6xnkXeMgkJZpPDQEimcmKyRgkEG0aq5gS3OUvr5LOZc2t164e6tXGbVFHGZ2iM3SBXHSNGugeNVEbEZShZ/SK3qwn68V6tz4WoyWr2DlGf2B9/gAlmpZD</latexit>

Local Environment 
of Student

(cognitive model 
of student)

Student selects  as 
proposed answer/key 

, includes justification 
j (ultimately construed 
as proof/argument ) 
if permitted, and 
supplies to the agent.

ωi

α

π

CCn

<latexit sha1_base64="JlkyKn2cBE2Hl7Gl2A4eK/E3TcA=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZfFblxWsA9ox5JJM21oJhmSjFKG/ocbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ncLa+sbmVnG7tLO7t39QPjxqa5koQltEcqm6AdaUM0FbhhlOu7GiOAo47QSTRuZ3HqnSTIp7M42pH+GRYCEj2FjpoR9hMyaYp43GbCAG5YpbdedAq8TLSQVyNAflr/5QkiSiwhCOte55bmz8FCvDCKezUj/RNMZkgke0Z6nAEdV+Ok89Q2dWGaJQKvuEQXP190aKI62nUWAns5R62cvE/7xeYsJrP2UiTgwVZHEoTDgyEmUVoCFTlBg+tQQTxWxWRMZYYWJsUSVbgrf85VXSvqh6terlXa1Sv8nrKMIJnMI5eHAFdbiFJrSAgIJneIU358l5cd6dj8Vowcl3juEPnM8fjzqSjw==</latexit>

A given test.

Φk

j

ωi

𝒜

The sub-algorithm G3Solver, explained and demonstrated elsewhere 
in the present extended abstract, is used in the Master Method.

… G3Solver …

12[

i=1

CCi

<latexit sha1_base64="nUbhRPpeD7FHPzQ1qpxaGBm32sw=">AAACDHicbVDLSsNAFL3xWeur6tLNYBFclaRUdCMUu3FZwT6gjWUynbRDJ5MwMxFKyAe48VfcuFDErR/gzr9x0mahrQcGDuecy9x7vIgzpW3721pZXVvf2CxsFbd3dvf2SweHbRXGktAWCXkoux5WlDNBW5ppTruRpDjwOO14k0bmdx6oVCwUd3oaUTfAI8F8RrA20qBU7ntsROJokLArJ71PnGqK+gHWY4J50mikRk9Nyq7YM6Bl4uSkDDmag9JXfxiSOKBCE46V6jl2pN0ES80Ip2mxHysaYTLBI9ozVOCAKjeZHZOiU6MMkR9K84RGM/X3RIIDpaaBZ5LZnmrRy8T/vF6s/Us3YSKKNRVk/pEfc6RDlDWDhkxSovnUEEwkM7siMsYSE236K5oSnMWTl0m7WnFqlfPbWrl+nddRgGM4gTNw4ALqcANNaAGBR3iGV3iznqwX6936mEdXrHzmCP7A+vwBp3+bYg==</latexit>

Figure 3: Overarching Architecture of TK12MTA (TIPPAE
K–12 Math Testing Agent) The Master Method, not speci-
fied here, begins with the generation of a given test T us-
ing/consistent with common-core standards at the relevant
grade level, and also using the particular grade-level axiom
system Φk selected from reverse-mathematics content (i.e.
from A ).

Figure 4: G3Solver Algorithm It should be noted that the
algorithm is able to handle selections of an option ωi in
multiple-choice questions, and justifications supplied by stu-
dents to justify their selection.



Figure 5: Proof of Answer/Key Returned by G3Solver Al-
gorithm Readers with superlative eyesight will notice that
the proof makes explicit use of aspects of a cognitive model
of a given student, by using the available cognitive/modal
operators in a cognitive calculus..

We report that a run of an implementation of G3Solver, in
which calls are made to the aforementioned ShadowProver
system, returns a proof for the answer/key α in 1.1 seconds.
The proof is shown in Figure 5.

Objections
“Your approach falls prey to teaching to the test!”
This is an objection that educators are quite familiar with.
In our case, we anticipate hearing it expressed quite loudly,
since after all we are undeniably seeing to have AI teach by
issuing and assessing performance on tests.

However, the objection does not apply to our work, at
least in our opinion, for a very straightforward reason. The
reason is that in the case of math (at least at this early level)
and the questions composing the tests in question, the con-
tent on tests and what is to be learned is one and the same!
This is especially true because many of the test questions
present scenarios that match problems seen in “real life.”
Even in the case of the simple math questions shown above,
this is true. In trying to obtain the square footage of rooms
in a domicile, but where information is not complete, it is
quite possible that the figure and problem shown in Figure 1
could be a real-life one.

“A major driver of the disparity you rightly
bemoan is technology!”
The objection, fleshed out to a degree: “The economically
disadvantaged suffer from a lack of access to computational
technology (e.g. decent computers, adequate internet ac-
cess/speed, etc.). Your solution, since it requires students to
be helped by your AI to have access to sophisticated compu-
tational technology, is a non-starter without these problems
solved first!”

In quick reply: We concede that our AI-based remedia-
tion for disparity in mathematical prowess among American
youth requires parallel thrusts of effort to improve access
to the technology necessary to enable the artificial agents

we seek. However, the fact of the matter is that even be-
fore the advent of calculators, paper, pens and pencils, and
slide rules were things beyond the reach of many disadvan-
taged students — and yet certainly no one at the time could
rationally maintain that pedagogical innovation presuppos-
ing the availability of such things should not be pursued.
Things should be no different for us. Eventually the penetra-
tion of computational technology will advance, and getting
busy now on the AI enabled by that technology is simply
prudent and planful. At the end of the day, AI-based edu-
cation will always require computational, and computation
will always require hardware and software of some sort. For-
tunately there are some countervailing factors in our favor.
For instance, given the deployment of artificial agents of the
sort we are aiming at, disadvantaged students would be able
to sharpen their math skills even if other shortcomings aren’t
fully addressed (e.g. less competent teachers, unavailability
of human tutors, etc.).

Related Work
At present, we are unaware of any related work by others
aimed at building artificial pedagogical agents that are based
on an axiomatization of mathematics in order to enable such
agents to teach mathematics. Indeed, surprisingly, the use
of results produced by reverse mathematics seems to be en-
tirely absent in the area of AI-based/AI-infused math edu-
cation.4 Of course, the previous sentence refers only to Ele-
ment #4 in our logicist-AI approach as described above. This
element is certainly crucial and prominent (as the overall ar-
chitecture of our system shows; see again Figure 3. Nonethe-
less, this element, as the reader has seen, is but one aspect
of a number of others that distinguish our attempt to address
the math-proficiency disparity between the wealthy and the
poor in the U.S. This naturally prompts the question: What
about work by others that relates to other aspects of our par-
ticular R&D methodology? Quite a bit could be said about
related work in the part of AI that is logicist/logic-based, and
as most readers will know, intelligent tutoring systems in
AI are related to our work. However, discussion of specifics
must wait for a full paper that expands the present abstract.

Conclusion and Next Steps
We have introduced the reader to a grave problem in U.S.
K–12 math education, and outlined our proposed AI-based
solution to it. There is of course much work that remains
to be carried out. Concretely, for Grade-3 math questions of
the New-York-State variety, we look forward to conducting
between-group experiments with subjects in order to ascer-
tain whether treatment (i.e., use of an embodiment of our
overall architecture, with which subjects interact in a sup-
plement to their standard in-school education) results in im-
provement in performance on the annual math tests admin-
istered by NYSE.5 At the theoretical level, next steps in-

4This may in part be because reverse mathematics is by any
metric formally intricate, and completely different in nature from
statistical/neural AI today often called ‘machine learning’ or just
‘ML’ for short.

5Again: New York State Education Department.



clude pushing forward with prototypes based on more so-
phisticated instantiations of The Master Method, for exam-
ple instantiations at the level of elementary algebra, in which
even the first simple equations given to students involve both
universal and existential quantification in formal logic, and
hence call for an understanding of such quantification in or-
der to be proficient.6
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