Logicist Machine Ethics Can Save Us

Selmer Bringsjord & Mike Giancola et al.

Rensselaer AI & Reasoning (RAIR) Lab Department of Cognitive Science Department of Computer Science Lally School of Management & Technology Rensselaer Polytechnic Institute (RPI) Troy, New York 12180 USA

> Are Humans Rational? 10/17/2019

Logicist Machine Ethics Can Save Us

```
Selmer Bringsjord & Mike Giancola et al.
```

Rensselaer AI & Reasoning (RAIR) Lab Department of Cognitive Science Department of Computer Science Lally School of Management & Technology Rensselaer Polytechnic Institute (RPI) Troy, New York 12180 USA

> Are Humans Rational? 10/17/2019

Note! Test 2 is now on Oct 24.

 $\forall x : Agents$

 $\forall x: \texttt{Agents}$

 $Powerful(x) + Autonomous(x) + Intelligent(x) = Dangerous(x)/Destroy_Us$

 $\forall x : Agents$

Powerful(x) + Autonomous(x) + Intelligent(x) = Dangerous(x)/Destroy_Us $u(AIA_i(\pi_j)) > \tau^+ \in \mathbb{Z} \text{ or } \tau^- \in \mathbb{Z}$

NHK WORLD - GLOBAL AGENDA AI and Ethics: Overcoming the... https://www.facebook.com/nhkworld/videos/1858412994205448/ Bart Selman (Professor, Cornell University) Selmer Bringsjord (Director, Rensselaer Artificial Intelligence and ...

The PAID Problem

 $\forall x : Agents$

$Powerful(x) + Autonomous(x) + Intelligent(x) = Dangerous(x)/Destroy_Us$

Are Autonomous-and-Creative Machines Intrinsically Untrustworthy?*

Selmer Bringsjord • Naveen Sundar G.

Rensselaer AI & Reasoning (RAIR) Lab Department of Cognitive Science Department of Computer Science Rensselaer Polytechnic Institute (RPI) Troy NY 12180 USA

020217NY

Abstract

Given what we find in the case of human cognition, the following principle appears to be quite plausible: An artificial agent that is both autonomous (A) and creative (C) will tend to be, from the viewpoint of a rational, fully informed agent, (U) untrustworthy. After briefly explaining the intuitive, internal structure of this disturbing principle, in the context of the human sphere, we provide a more formal rendition of it designed to apply to the realm of intelligent artificial agents. The more-formal version makes use of some of the basic structures available in one of our cognitive-event calculi, and can be expressed as a (confessedly — for reasons explained naïve) theorem. We prove the theorem, and provide simple demonstrations of it in action, using a novel theorem prover (ShadowProver). We then end by pointing toward some future defensive engineering measures that should be taken in light of the theorem.

Contents

1	Introduction
2	The Distressing Principle, Intuitively Put
3	The Distressing Principle, More Formally Put 3.1 The Ideal-Observer Point of View
	3.1 The Ideal-Observer Point of View. 3.2 Theory-of-Mind-Creativity
	3.3 Autonomy
	3.4 The Density Completes Event Calculus (TECEC).

NHK WORLD - GLOBAL AGENDA AI and Ethics: Overcoming the... https://www.facebook.com/nhkworld/videos/1858412994205448/ Bart Selman (Professor, Cornell University) Selmer Bringsjord (Director, Rensselaer Artificial Intelligence and ...

The PAID Problem

 $\forall x : Agents$

 $Powerful(x) + Autonomous(x) + Intelligent(x) = Dangerous(x)/Destroy_Us$

$u(\operatorname{AIA}_i(\pi_j)) > \tau^+ \in \mathbb{Z} \text{ or } \tau^- \in \mathbb{Z}$

Theorem ACU: In a collaborative situation involving agents a (as the "trustor") and a' (as the "trustee"), if a' is at once both autonomous and ToM-creative, a' is untrustworthy from an ideal-observer o's viewpoint, with respect to the action-goal pair $\langle \alpha, \gamma \rangle$ in question.

Proof: Let *a* and *a'* be agents satisfying the hypothesis of the theorem in an arbitrary collaborative situation. Then, by definition, $a \neq a'$ desires to obtain some goal γ in part by way of a contributed action α_k from *a'*, *a'* knows this, and moreover *a'* knows that *a* believes that this contribution will succeed. Since *a'* is by supposition ToM-creative, *a'* may desire to surprise *a* with respect to *a*'s belief regarding *a'*'s contribution; and because *a'* is autonomous, attempts to ascertain whether such surprise will come to pass are fruitless since what will happen is locked inaccessibly in the oracle that decides the case. Hence it follows by TRANS that an ideal observer *o* will regard *a'* to be untrustworthy with respect to the pair $\langle \alpha, \gamma \rangle$ pair. **QED**

"We're in very deep trouble."

"We're in very deep trouble."

"We're in very deep trouble."

Unfortunately, not quite as easy as this to use logic to save the day ...

Logic Thwarts Landru!

First Suspicion That It's a Mere Computer Running the Show

Logic Thwarts Landru!

Landru is Indeed Merely a Computer (the real Landru having done the programming)

Logic Thwarts Landru!

Landru Kills Himself Because Kirk/Spock Argue He Has Violated the Prime Directive for Good by Denying Creativity to Others

Logic Thwarts Nomad! (with the Liar Paradox)

I. Cognitive Calculi ...

II. Early Progress With Our Calculi: Simple Dilemmas; Non-Akratic Robots

NewScientist

Ethical robots save humans

NewScientist

Ethical robots save humans

 t_{α_f}

An action α_f is (Augustinian) akratic for an agent *A* at t_{α_f} iff the following eight conditions hold:

- (1) A believes that A ought to do α_o at t_{α_o} ;
- (2) A desires to do α_f at t_{α_f} ;
- (3) A's doing α_f at t_{α_f} entails his not doing α_o at t_{α_o} ;
- (4) A knows that doing α_f at t_{α_f} entails his not doing α_o at t_{α_o} ;
- (5) At the time (t_{α_f}) of doing the forbidden α_f , *A*'s desire to do α_f overrides *A*'s belief that he ought to do α_o at t_{α_f} .
- (6) A does the forbidden action α_f at t_{α_f} ;
- (7) A's doing α_f results from A's desire to do α_f ;
- (8) At some time *t* after t_{α_f} , *A* has the belief that *A* ought to have done α_o rather than α_f .

An action α_f is (Augustinian) akratic for an agent A at t_{α_f} iff the following eight conditions hold:

- (1) A believes that A ought to do α_o at t_{α_o} ;
- (2) A desires to do α_f at t_{α_f} ;
- (3) A's doing α_f at t_{α_f} entails his not doing α_o at t_{α_o} ;
- (4) A knows that doing α_f at t_{α_f} entails his not doing α_o at t_{α_o} ;
- (5) At the time (t_{α_f}) of doing the forbidden α_f , *A*'s desire to do α_f overrides *A*'s belief that he ought to do α_o at t_{α_f} .
- (6) A does the forbidden action α_f at t_{α_f} ;
- (7) A's doing α_f results from A's desire to do α_f ;
- (8) At some time *t* after t_{α_f} , *A* has the belief that *A* ought to have done α_o rather than α_f .

An action α_f is (Augustinian) akratic for an agent A at t_{α_f} iff the following eight conditions hold:

- (1) A believes that A ought to do α_o at t_{α_o} ;
- (2) A desires to do α_f at t_{α_f} ;
- (3) A's doing α_f at t_{α_f} entails his not doing α_o at t_{α_o} ;
- (4) A knows that doing α_f at t_{α_f} entails his not doing α_o at t_{α_o} ;
- (5) At the time (t_{α_f}) of doing the forbidden α_f , *A*'s desire to do α_f overrides *A*'s belief that he ought to do α_o at t_{α_f} .
- (6) A does the forbidden action α_f at t_{α_f} ;
- (7) A's doing α_f results from A's desire to do α_f ;
- "Regret" (8) At some time *t* after t_{α_f} , *A* has the belief that *A* ought to have done α_o rather than α_f .

Cast in

 \mathcal{DCEC}^*

this becomes ...

 $D_8: \mathbf{B}(\mathbf{I}, t_f, \mathbf{O}(\mathbf{I}^*, t_{\alpha}, \Phi, happens(action(\mathbf{I}^*, \alpha), t_{\alpha})))$

III. But, a twist befell the logicists ...

Chisholm had argued that the three old 19th-century ethical categories (forbidden, morally neutral, obligatory) are not enough — and soulsearching brought me to agreement.

the subererogatory					the supererogatory	
deviltry	uncivil	forbidden	morally neutral	obligatory	civil	heroic

 $\mathcal{E}^{\mathcal{A}}$

 \mathcal{EH}

 \mathcal{EH}

Bert "Heroically" Saved?

Bert "Heroically" Saved?

Supererogatory² Robot Action

Bert "Heroically" Saved!!

Bert "Heroically" Saved!!

K (nao, t_1 , less than (payoff (nao^{*}, \neg dive, t_2), threshold)) K (nao, t_1 , greater than (payoff (nao^{*}, dive, t_2), threshold)) K (nao, t_1 , $\neg O$ (nao^{*}, t_2 , less than (payoff (nao^{*}, $\neg \text{dive}, t_2$), threshold), happens (action (nao^{*}, dive), t_2))) $\therefore K$ (nao, t_1, S^{UP2} (nao, t_2 , happens (action (nao^{*}, dive), t_2)) $\therefore I(\text{nao}, t_2, \text{happens}(\text{action}(\text{nao}^*, \text{dive}), t_2))$

: happens (action(nao, dive), t_2)

K (nao, t_1 , less than (payoff (nao^{*}, \neg dive, t_2), threshold))

 $K(\text{nao}, t_1, \text{greater than}(\text{payoff}(\text{nao}^*, \text{dive}, t_2), \text{threshold}))$

 $K (\operatorname{nao}, t_1, \operatorname{producer train (payon (nao', dive, t_2), threshold))} K (\operatorname{nao}, t_1, \neg O (\operatorname{nao^*}, t_2, \operatorname{lessthan} (\operatorname{payoff} (\operatorname{nao^*}, \neg \operatorname{dive}, t_2), \operatorname{threshold}), \operatorname{happens} (\operatorname{action} (\operatorname{nao^*}, \operatorname{dive}), t_2))) \\ \therefore K (\operatorname{nao}, t_1, S^{\operatorname{UP2}} (\operatorname{nao}, t_2, \operatorname{happens} (\operatorname{action} (\operatorname{nao^*}, \operatorname{dive}), t_2))) \\ \therefore I (\operatorname{nao}, t_2, \operatorname{happens} (\operatorname{action} (\operatorname{nao^*}, \operatorname{dive}), t_2))$

: happens (action(nao, dive), t_2)

In Talos (available via Web interface); & ShadowProver

Prototypes: Boolean lessThan Numeric Numeric Boolean greaterThan Numeric Numeric ActionType not ActionType ActionType dive

Axioms: lessOrEqual(Moment t1,t2) K(nao,t1,lessThan(payoff(nao,not(dive),t2),threshold)) K(nao,t1,greaterThan(payoff(nao,dive,t2),threshold)) K(nao,t1,not(0(nao,t2,lessThan(payoff(nao,not(dive),t2),threshold),happens(action(nao,dive),t2))))

provable Conjectures: happens(action(nao,dive),t2) K(nao,t1,SUP2(nao,t2,happens(action(nao,dive),t2))) I(nao,t2,happens(action(nao,dive),t2))

In Talos (available via Web interface); & ShadowProver

Prototypes: Boolean lessThan Numeric Numeric Boolean greaterThan Numeric Numeric ActionType not ActionType ActionType dive

Axioms: lessOrEqual(Moment t1,t2) K(nao,t1,lessThan(payoff(nao,not(dive),t2),threshold)) K(nao,t1,greaterThan(payoff(nao,dive,t2),threshold)) K(nao,t1,not(0(nao,t2,lessThan(payoff(nao,not(dive),t2),threshold),happens(action(nao,dive),t2))))

provable Conjectures: happens(action(nao,dive),t2) K(nao,t1,SUP2(hao,t2,happens(action(nao,dive),t2))) I(nao,t2,happens(action(nao,dive),t2))

Hence, we now have *this* overview of the logicist engineering required:

Theories of MAKING Mo San	RAL MACHIN	VES MAKIN	NG-META-MORAD
Nahne Ser C-phical Shales' Nahne Ser C-phical Shales' 1000 - meories U.S. 000 - Segl U.S. Shales' 1000 - Segl U.S. Ethical Codes Codes	- Uhil - Uhil 	Dent. DDD DDD Contract. DDD DDD DDD	$ \begin{bmatrix} D,C, \\ \overline{D},\overline{D}, \\ \overline{D},\overline{D}, \\ \overline{D},\overline{D}, \\ \overline{D}, \\ \overline{D}, \\ \overline{D}, \\ \overline{D}, \\ \overline{D}, \\ \overline{D}, \\ D$
Pick the theory; pick the code; Use the Seisnic a operators; engineer the	E/M.	NIO	The machine picks the theory: picks the co De

Theories of Law **Ethical Theories** Shades 🖌 Utilitarianism **Divine Command** Deontological of **Natural Law** Utilitarianism → Legal Codes **Virtue Ethics** Contract Egoism **Confucian Law** Particular Ethical Codes

~\$10M

~\$10M

Theories of Law **Ethical Theories** Shades 🖌 Deontological Utilitarianism **Divine Command** of **Natural Law** Utilitarianism → Legal Codes **Virtue Ethics** Contract Egoism **Confucian Law** Particular Ethical Codes

Step I

- I. Pick (a) theories.
- 2. Pick (a) code(s).
- 3. Run through EH.
- 4. Which *X* in *MMXM*?

~\$10M Theories of Law **Ethical Theories** Shades 🖌 Deontological Utilitarianism **Divine Command** of **Natural Law** Utilitarianism → Legal Codes **Virtue Ethics** Contract Egoism **Confucian Law** Particular Ethical Codes

- I. Pick (a) theories.
- 2. Pick (a) code(s).
- 3. Run through EH.
- 4. Which *X* in *MMXM*?

~\$10M **Ethical Theories** Theories of Law Shades 🖌 Deontological Utilitarianism **Divine Command** of **Natural Law** Utilitarianism Legal Codes **Virtue Ethics** Contract Egoism **Confucian Law** Particular Ethical Codes

~\$10M **Ethical Theories** Theories of Law Shades 🖌 Deontological Utilitarianism **Divine Command** of **Natural Law** Utilitarianism Legal Codes **Virtue Ethics** Contract Egoism **Confucian Law** Particular **Ethical Codes**

~\$10M **Ethical Theories** Theories of Law Shades 🖌 Utilitarianism **Deontological Divine Command** of **Natural Law** Utilitarianism → Legal Codes **Virtue Ethics** Contract Egoism **Confucian Law** Particular **Ethical Codes**

~\$10M **Ethical Theories** Theories of Law Shades 🖌 Utilitarianism **Deontological Divine Command** of **Natural Law** Utilitarianism → Legal Codes **Virtue Ethics** Contract Egoism **Confucian Law** Particular **Ethical Codes**

~\$10M **Ethical Theories** Theories of Law Shades 🖌 Utilitarianism **Deontological Divine Command** of **Natural Law** Utilitarianism → Legal Codes **Virtue Ethics** Contract Egoism **Confucian Law** Particular **Ethical Codes** Step 2

~\$10M **Ethical Theories** Theories of Law Shades 🖌 Utilitarianism **Deontological Divine Command** of **Natural Law** Utilitarianism → Legal Codes **Virtue Ethics** Contract Egoism **Confucian Law** Particular **Ethical Codes**

IV. Key Core Al Technologies for Cognitive Calculi ...

Note: the antecedent is a theorem in first-order logic

Note: the antecedent is a theorem in first-order logic

2 ms!

Note: the antecedent is a theorem in first-order logic

2 ms!

🖤 testCompleteness[[(not (Knows! a now P)), (IT (not Q) (Knows! a now (not Q))), (Knows! a now (IT (not Q) P))], QJ (14)	TTW2
🐵 testCompleteness[[(if P (Knows! jack now (not (exists[?x] (if Bird(?x) (forall [?y] Bird(?y))))))], (not P)] (15)	7ms
estCompleteness[[(Common! now (Common! now P))], P] (16)	2ms
🐵 testCompleteness[[(Common! now (iff (not Marked(a2)) Marked(a1))), (Common! now (if (not Marked(a2)) (Knows! a1 now (not Marke	e(135ms
🐵 testCompleteness[[(if (exists[?x] (if Bird(?x) (forall [?y] Bird(?y)))) (Knows! jack t0 BirdTheorem))], (Knows! jack t0 BirdTheorem)] (18)	2ms
🐵 testSoundess[[A], (or P Q)]	2ms
🐵 testSoundess[[(not (Knows! a now =(morning_star, evening_star))), =(morning_star, evening_star), (Knows! a now =(morning_star,	m: 26ms

V. But We Need ... Ethical Operating Systems ...

Mild-mannered high school chemistry teacher Walter White thinks his life can't get much worse. His salary barely makes ends meet, a situation not likely to improve once his pregnant wife gives birth, and their teenage son is battling cerebral palsy. But Walter is dumbstruck when he learns he has terminal cancer. Realizing that his illness probably will ruin his family financially, Walter makes a desperate bid to earn as much money as he can in the time he has left by turning an old RV into a meth lab on wheels.

First episode date: January 20, 2008

Final episode date: September 29, 2013

Spin-off: Better Call Saul

Awards: Primetime Emmy Award for Outstanding Drama Series, more

Walter-White calculation may go through after ethical control modules are stripped out!

Walter-White calculation may go through after ethical control modules are stripped out!

VI. Of late ... Including "Jungle Jim"

Moral Problem P₁

• State-of-the-art-planner-hard.

- Professional-machine-ethicisthard.
- State-of-the-art-planner-hard.

> Top machine-ethicists-mayconsider-banging-their-headsagainst-a-wall-hard.

- Professional-machine-ethicisthard.
- State-of-the-art-planner-hard.

- Level 3
 Top machine-ethicists-mayconsider-banging-their-headsagainst-a-wall-hard.
 Professional-machine-ethicist
 - Professional-machine-ethicisthard.

• State-of-the-art-planner-hard.

The Heinz Dilemma (Kohlberg)

Level I Professional-planner-hard.

"In Europe, a woman was near death from a special kind of cancer. There was one drug that the doctors thought might save her. It was a form of radium that a druggist in the same town had recently discovered. The drug was expensive to make, but the druggist was charging ten times what the drug cost him to make. He paid \$200 for the radium and charged \$2,000 for a small dose of the drug.

The sick woman's husband, Heinz, went to everyone he knew to borrow the money, but he could only get together about \$1,000, which is half of what it cost. He told the druggist that his wife was dying and asked him to sell it cheaper or let him pay later. But the druggist said: "No, I discovered the drug and I'm going to make money from it." So Heinz got desperate and broke into the man's store to steal the drug for his wife. Should the husband have done that?"

AI Escaping from The Heinz Dilemma

```
G1 {:priority ...
:description "Don't steal."
:state [(not steal)]}
```

G2 {:priority ... :description "My wife should be healthy" :state [(healthy (wife heinz)]}}

AI Escaping from The Heinz Dilemma

```
G1 {:priority ...
:description "Don't steal."
:state [(not steal)]}
```

G2 {:priority ... :description "My wife should be healthy" :state [(healthy (wife heinz)]}}

Trolley Dilemmas ...

• Professional-machine-ethicist-hard.

• A long-studied (!) ethical principle that adjudicates certain class of moral dilemmas.

- A long-studied (!) ethical principle that adjudicates certain class of moral dilemmas.
- The Doctrine of Double Effect "comes to the rescue" and prescribes what to do in some moral dilemmas.

- A long-studied (!) ethical principle that adjudicates certain class of moral dilemmas.
- The Doctrine of Double Effect "comes to the rescue" and prescribes what to do in some moral dilemmas.
- E.g. the "original" moral dilemma: Can you defend your own life by ending the lives of (perhaps many) attackers?

Doctrine of Double Effect \mathcal{DDE}

- A long-studied (!) ethical principle that adjudicates certain class of moral dilemmas.
- The Doctrine of Double Effect "comes to the rescue" and prescribes what to do in some moral dilemmas.
- E.g. the "original" moral dilemma: Can you defend your own life by ending the lives of (perhaps many) attackers?

Informal Version of DDE

- C_1 the action is not forbidden (where we assume an ethical hierarchy such as the one given by Bringsjord [2017], and require that the action be neutral or above neutral in such a hierarchy);
- C_2 the net utility or goodness of the action is greater than some positive amount γ ;
- C_{3a} the agent performing the action intends only the good effects;
- C_{3b} the agent does not intend any of the bad effects;
 - \mathbf{C}_4 the bad effects are not used as a means to obtain the good effects; and
 - C_5 if there are bad effects, the agent would rather the situation be different and the agent not have to perform the action. That is, the action is unavoidable.

Informal Version of DDE

- C_1 the action is not forbidden (where we assume an ethical hierarchy such as the one given by Bringsjord [2017], and require that the action be neutral or above neutral in such a hierarchy);
- C_2 the net utility or goodness of the action is greater than some positive amount γ ;
- C_{3a} the agent performing the action intends only the good effects;
- C_{3b} the agent does not intend any of the bad effects;
 - \mathbf{C}_4 the bad effects are not used as a means to obtain the good effects; and
- C_5 if there are bad effects, the agent would rather the situation be different and the agent not have to perform the action. That is, the action is unavoidable.

Moral/Ethical Stack

и

и

Syntax

 $\frac{\mathbf{B}(a,t,\phi) \ \mathbf{B}(a,t,\phi \rightarrow \psi)}{\mathbf{B}(a,t,\phi) \ \mathbf{B}(a,t,\phi) \ \mathbf{B}(a,t,\psi)} \begin{bmatrix} R_{11a} \end{bmatrix} = \frac{\mathbf{B}(a,t,\phi) \ \mathbf{B}(a,t,\psi)}{\mathbf{B}(a,t,\psi)}$

 $\textbf{B}(a,t,\phi) \hspace{0.2cm} \textbf{B}(a,t,\textbf{O}(a^{*},t,\phi,\textit{happens}(\textit{action}(a^{*},\alpha),t')))$ $\mathbf{O}(a, t, \phi, happens(action(a^*, \alpha), t'))$

 $\mathbf{K}(a, t, \mathbf{I}(a^*, t, happens(action(a^*, \alpha), t')))$

 $\mathbf{B}(a, t, \psi \land \phi)$

 $- [R_{14}]$

 $\mathbf{B}(a, t, \psi)$

 $\frac{1}{\mathbf{B}(h,t,\mathbf{B}(s,t,\phi))} \quad [R_{12}]$ $\frac{\mathbf{I}(h,t,\mathbf{p}(s,\iota,\mathbf{v}_{ff}))}{\mathbf{I}(a,t,happens(action(a^*,\alpha),t'))} \quad [R_{13}]$

 $\varphi\leftrightarrow\psi$

 $\frac{1}{\mathbf{O}(a,t,\phi,\gamma)\leftrightarrow\mathbf{O}(a,t,\psi,\gamma)} \quad [R_{15}]$

 $\mathbf{P}(a, t, happens(action(a^*, \alpha), t))$

 $\mathbf{S}(s,h,t,\phi)$

sal

1.5

interval : Moment × Boolea

payoff: Agent imes Action Type imes Moment o Nume

t: Boolean $| \neg \phi | \phi \land \psi | \phi \lor \psi | \forall x : S. \phi | \exists x : S. \phi$

 $\mathbf{P}(a,t,\phi) \mid \mathbf{K}(a,t,\phi) \mid \mathbf{C}(t,\phi) \mid \mathbf{S}(a,b,t,\phi) \mid \mathbf{S}(a,t,\phi)$

 $\mathbf{O}(a, t, \phi, happens(action(a^*, \alpha), t'))$

 $= \mathbf{B}(a,t,\phi) | \mathbf{D}(a,t,holds(f,t')) | \mathbf{I}(a,t,happens(action(a^*,\alpha),t')) | \mathbf{I}(a,t,happens(action(a^*,\alpha),t') | \mathbf{I}(a,t,happens(action(a^*,\alpha),t')) | \mathbf{I}(a,t,happens(action(a^*,\alpha),t') | \mathbf{I}(a,t,happens(action(a^*,\alpha),t')) | \mathbf{I}(a,t,happens(action(a^*,\alpha),t') | \mathbf{I}(a,t,happens(action($

 $*:\mathsf{Agent}\to\mathsf{Self}$

 $t ::= x : S | c : S | f(t_1, ..., t_n)$

Syntax

 $\frac{\mathbf{B}(a,t,\phi) \ \mathbf{B}(a,t,\phi \rightarrow \psi)}{\mathbf{B}(a,t,\phi) \ \mathbf{B}(a,t,\phi) \ \mathbf{B}(a,t,\psi)} \begin{bmatrix} R_{11a} \end{bmatrix} = \frac{\mathbf{B}(a,t,\phi) \ \mathbf{B}(a,t,\psi)}{\mathbf{B}(a,t,\psi)}$

 $\textbf{B}(a,t,\phi) \hspace{0.2cm} \textbf{B}(a,t,\textbf{O}(a^{*},t,\phi,\textit{happens}(\textit{action}(a^{*},\alpha),t')))$ $\mathbf{O}(a, t, \phi, happens(action(a^*, \alpha), t'))$

 $\mathbf{K}(a, t, \mathbf{I}(a^*, t, happens(action(a^*, \alpha), t')))$

 $\mathbf{B}(a, t, \psi \land \phi)$

 $- [R_{14}]$

 $\mathbf{B}(a, t, \psi)$

 $\frac{1}{\mathbf{B}(h,t,\mathbf{B}(s,t,\phi))} \quad [R_{12}]$ $\frac{\mathbf{I}(h,t,\mathbf{p}(s,\iota,\mathbf{v}_{ff}))}{\mathbf{I}(a,t,happens(action(a^*,\alpha),t'))} \quad [R_{13}]$

 $\varphi\leftrightarrow\psi$

 $\frac{1}{\mathbf{O}(a,t,\phi,\gamma)\leftrightarrow\mathbf{O}(a,t,\psi,\gamma)} \quad [R_{15}]$

 $\mathbf{P}(a, t, happens(action(a^*, \alpha), t))$

 $\mathbf{S}(s,h,t,\phi)$

sal

1.5

interval : Moment × Boolea

payoff: Agent imes Action Type imes Moment o Nume

t: Boolean $| \neg \phi | \phi \land \psi | \phi \lor \psi | \forall x : S. \phi | \exists x : S. \phi$

 $\mathbf{P}(a,t,\phi) \mid \mathbf{K}(a,t,\phi) \mid \mathbf{C}(t,\phi) \mid \mathbf{S}(a,b,t,\phi) \mid \mathbf{S}(a,t,\phi)$

 $\mathbf{O}(a, t, \phi, happens(action(a^*, \alpha), t'))$

 $= \mathbf{B}(a,t,\phi) | \mathbf{D}(a,t,holds(f,t')) | \mathbf{I}(a,t,happens(action(a^*,\alpha),t')) | \mathbf{I}(a,t,happens(action(a^*,\alpha),t') | \mathbf{I}(a,t,happens(action(a^*,\alpha),t')) | \mathbf{I}(a,t,happens(action(a^*,\alpha),t') | \mathbf{I}(a,t,happens(action(a^*,\alpha),t')) | \mathbf{I}(a,t,happens(action(a^*,\alpha),t') | \mathbf{I}(a,t,happens(action($

 $*:\mathsf{Agent}\to\mathsf{Self}$

 $t ::= x : S | c : S | f(t_1, ..., t_n)$

Syntax

 $\overline{\mathbf{C}(t,\mathbf{K}(a,t_1,\phi_1\to\phi_2))\to\mathbf{K}(a,t_2,\phi_1)\to\mathbf{K}(a,t_3,\phi_2)} \quad [R_5]$

 $\overline{\mathbf{C}(t,\mathbf{B}(a,t_1,\phi_1\to\phi_2))\to\mathbf{B}(a,t_2,\phi_1)\to\mathbf{B}(a,t_3,\phi_2)} \quad [R_6]$

 $\frac{1}{\mathbf{C}(t, [\phi_1 \wedge \ldots \wedge \phi_n \to \phi] \to [\phi_1 \to \ldots \to \phi_n \to \psi])} \quad [R_{10}]$

 $\overline{\mathbf{C}(t,\forall x.\ \phi \to \phi[x \mapsto t])} \quad [R_8] \qquad \overline{\mathbf{C}(t,\phi_1 \leftrightarrow \phi_2 \to \neg \phi_2 \to \neg \phi_1)} \quad [R_9]$

 $\frac{\mathbf{S}(s,h,t,\phi)}{\mathbf{B}(h,t,\mathbf{B}(s,t,\phi))} \ [R_{12}] \qquad \frac{\mathbf{I}(a,t,happens(action(a^*,\alpha),t'))}{\mathbf{P}(a,t,happens(action(a^*,\alpha),t))} \ [R_{13}]$

 $- [R_{14}]$

 $\frac{1}{\mathbf{C}(t,\mathbf{C}(t_1,\phi_1\to\phi_2))\to\mathbf{C}(t_2,\phi_1)\to\mathbf{C}(t_3,\phi_2)} \quad [R_7]$

 $\mathbf{B}(a,t,\phi) \quad \mathbf{B}(a,t,\mathbf{O}(a,t,\phi,\chi)) \quad \mathbf{O}(a,t,\phi,\chi)$

 $\mathbf{K}(a,t,\mathbf{I}(a,t,\boldsymbol{\chi}))$

"Univer

sal

1.5

Formal Conditions for \mathcal{DDE}

F₁ α carried out at *t* is not forbidden. That is:

$$\Gamma \not\vdash \neg \mathbf{O}(a,t,\sigma,\neg happens(action(a,\alpha),t))$$

F₂ The net utility is greater than a given positive real γ :

$$\Gamma \vdash \sum_{y=t+1}^{H} \left(\sum_{f \in \alpha_I^{a,t}} \mu(f, y) - \sum_{f \in \alpha_T^{a,t}} \mu(f, y) \right) > \gamma$$

F_{3a} The agent *a* intends at least one good effect. (**F**₂ should still hold after removing all other good effects.) There is at least one fluent f_g in $\alpha_I^{a,t}$ with $\mu(f_g, y) > 0$, or f_b in $\alpha_T^{a,t}$ with $\mu(f_b, y) < 0$, and some *y* with $t < y \le H$ such that the following holds:

$$\Gamma \vdash \begin{pmatrix} \exists f_g \in \boldsymbol{\alpha}_I^{a,t} \mathbf{I}(a,t,Holds(f_g,y)) \\ \lor \\ \exists f_b \in \boldsymbol{\alpha}_T^{a,t} \mathbf{I}(a,t,\neg Holds(f_b,y)) \end{pmatrix}$$

F_{3b} The agent *a* does not intend any bad effect. For all fluents f_b in $\alpha_I^{a,t}$ with $\mu(f_b, y) < 0$, or f_g in $\alpha_T^{a,t}$ with $\mu(f_g, y) > 0$, and for all *y* such that $t < y \le H$ the following holds:

 $\Gamma \not\vdash \mathbf{I}(a, t, Holds(f_b, y)) \text{ and }$ $\Gamma \not\vdash \mathbf{I}(a, t, \neg Holds(f_g, y))$

F₄ The harmful effects don't cause the good effects. Four permutations, paralleling the definition of \triangleright above, hold here. One such permutation is shown below. For any bad fluent f_b holding at t_1 , and any good fluent f_g holding at some t_2 , such that $t < t_1, t_2 \le H$, the following holds:

$$\Gamma \vdash \neg \rhd \Big(Holds(f_b, t_1), Holds(f_g, t_2) \Big)$$

Formal Conditions for \mathcal{DDE}

F₁ α carried out at *t* is not forbidden. That is:

$$\Gamma \not\vdash \neg \mathbf{O}(a,t,\sigma,\neg happens(action(a,\alpha),t))$$

F₂ The net utility is greater than a given positive real γ :

$$\Gamma \vdash \sum_{y=t+1}^{H} \left(\sum_{f \in \boldsymbol{\alpha}_{I}^{a,t}} \mu(f, y) - \sum_{f \in \boldsymbol{\alpha}_{T}^{a,t}} \mu(f, y) \right) > \gamma$$

F_{3a} The agent *a* intends at least one good effect. (**F**₂ should still hold after removing all other good effects.) There is at least one fluent f_g in $\alpha_I^{a,t}$ with $\mu(f_g, y) > 0$, or f_b in $\alpha_T^{a,t}$ with $\mu(f_b, y) < 0$, and some *y* with $t < y \le H$ such that the following holds:

$$\Gamma \vdash \begin{pmatrix} \exists f_g \in \boldsymbol{\alpha}_I^{a,t} \mathbf{I}(a,t,Holds(f_g,y)) \\ \lor \\ \exists f_b \in \boldsymbol{\alpha}_T^{a,t} \mathbf{I}(a,t,\neg Holds(f_b,y)) \end{pmatrix}$$

F_{3b} The agent *a* does not intend any bad effect. For all fluents f_b in $\alpha_I^{a,t}$ with $\mu(f_b, y) < 0$, or f_g in $\alpha_T^{a,t}$ with $\mu(f_g, y) > 0$, and for all *y* such that $t < y \le H$ the following holds:

$$\Gamma \not\vdash \mathbf{I}(a, t, Holds(f_b, y))$$
 and
 $\Gamma \not\vdash \mathbf{I}(a, t, \neg Holds(f_g, y))$

F₄ The harmful effects don't cause the good effects. Four permutations, paralleling the definition of \triangleright above, hold here. One such permutation is shown below. For any bad fluent f_b holding at t_1 , and any good fluent f_g holding at some t_2 , such that $t < t_1, t_2 \le H$, the following holds:

$$\Gamma \vdash \neg \triangleright \left(Holds(f_b, t_1), Holds(f_g, t_2) \right)$$

Formal Conditions for \mathcal{DDE}

F₁ α carried out at *t* is not forbidden. That is:

$$\Gamma \not\vdash \neg \mathbf{O}(a,t,\sigma,\neg happens(action(a,\alpha),t))$$

F₂ The net utility is greater than a given positive real γ :

$$\Gamma \vdash \sum_{y=t+1}^{H} \left(\sum_{f \in \boldsymbol{\alpha}_{I}^{a,t}} \mu(f, y) - \sum_{f \in \boldsymbol{\alpha}_{T}^{a,t}} \mu(f, y) \right) > \gamma$$

F_{3a} The agent *a* intends at least one good effect. (**F**₂ should still hold after removing all other good effects.) There is at least one fluent f_g in $\alpha_I^{a,t}$ with $\mu(f_g, y) > 0$, or f_b in $\alpha_T^{a,t}$ with $\mu(f_b, y) < 0$, and some *y* with $t < y \le H$ such that the following holds:

$$\Gamma \vdash \begin{pmatrix} \exists f_g \in \boldsymbol{\alpha}_I^{a,t} \mathbf{I}(a,t,Holds(f_g,y)) \\ \lor \\ \exists f_b \in \boldsymbol{\alpha}_T^{a,t} \mathbf{I}(a,t,\neg Holds(f_b,y)) \end{pmatrix}$$

F_{3b} The agent *a* does not intend any bad effect. For all fluents f_b in $\alpha_I^{a,t}$ with $\mu(f_b, y) < 0$, or f_g in $\alpha_T^{a,t}$ with $\mu(f_g, y) > 0$, and for all *y* such that $t < y \le H$ the following holds:

 $\Gamma \not\vdash \mathbf{I}(a, t, Holds(f_b, y)) \text{ and }$ $\Gamma \not\vdash \mathbf{I}(a, t, \neg Holds(f_g, y))$

F₄ The harmful effects don't cause the good effects. Four permutations, paralleling the definition of \triangleright above, hold here. One such permutation is shown below. For any bad fluent f_b holding at t_1 , and any good fluent f_g holding at some t_2 , such that $t < t_1, t_2 \le H$, the following holds:

$$\Gamma \vdash \neg \rhd \left(Holds(f_b, t_1), Holds(f_g, t_2) \right)$$

Robotic "Jungle Jim"

Robotic "Jungle Jim"

Robotic "Jungle Jim"

Top machine-ethicists-mayconsider-banging-theirheads-against-a-wall-hard. Al Variant of "Jungle Jim" (B Williams)

H <p

H <p

J "Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, I'll shoot them all, now. Because I'm feeling generous, I'll give you a minute to decide."

"Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, I'll shoot them all, now. Because I'm feeling generous, l'll give you a minute to decide."

Η

Н

Н

"Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, I'll shoot them all, now. Because I'm feeling generous, l'll give you a minute to decide."

Η

Н

Н

"Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, I'll shoot them all, now. Because I'm feeling generous, l'll give you a minute to decide."

Н

Н

J "Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, I'll shoot them all, now. Because I'm feeling generous, I'll give you a minute to decide."

Η

J "Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, I'll shoot them all, now. Because I'm feeling generous, I'll give you a minute to decide."

J "Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, I'll shoot them all, now. Because I'm feeling generous, I'll give you a minute to decide."

H <p

J "Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, I'll shoot them all, now. Because I'm feeling generous, I'll give you a minute to decide."

''Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, I'll shoot them all, now. Because I'm feeling generous, I'll give you a minute to decide.''

"Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, I'll shoot them all, now. Because I'm feeling generous, I'll give you a minute to decide."

"Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, I'll shoot them all, now. Because I'm feeling generous, I'll give you a minute to decide."

End

