Logicist Machine Ethics Can Save Us

Selmer Bringsjord \& Mike Giancola et al.

Rensselaer AI \& Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management \& Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York I2I80 USA

Are Humans Rational?
10/17/2019

Rensselaer AI and Reasoning Lab

Logicist Machine Ethics Can Save Us

Selmer Bringsjord \& Mike Giancola et al.

Rensselaer AI \& Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management \& Technology
Rensselaer Polytechnic Institute (RPI)
Troy, New York I2I80 USA
Are Humans Rational?
10/17/2019

Rensselaer AI and Reasoning Lab

Note!

Test 2 is now on Oct 24.

The PAID Problem

The PAID Problem

$\forall \mathrm{x}$: Agents

The PAID Problem

$\forall \mathrm{x}$: Agents
Powerful(x) + Autonomous(x) + Intelligent(x) = Dangerous(x)/Destroy_Us

The PAID Problem

$\forall \mathrm{x}$: Agents
Powerful(x) + Autonomous(x) + Intelligent(x) = Dangerous(x)/Destroy_Us

$$
u\left(\operatorname{AIA}_{i}\left(\pi_{j}\right)\right)>\tau^{+} \in \mathbb{Z} \text { or } \tau^{-} \in \mathbb{Z}
$$

The PAID Problem

$\forall \mathrm{x}$: Agents

Powerful(x) + Autonomous(x) + Intelligent(x) = Dangerous(x)/Destroy_Us

Are Autonomous-and-Creative Machines Intrinsically Untrustworthy?*

Selmer Bringsjord • Naveen Sundar G.
Rensselaer AI \& Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Rensselaer Polytechnic Institute (RPI)
Troy NY 12180 USA
020217NY

Abstract
Given what we find in the case of human cognition, the following principle appears to be quite plausible: An artificial agent that is both autonomous (A) and creative (C) will tend to be, from the viewpoint of a rational, fully informed agent, (U) untrustworthy. After briefly explaining the intritive, internal structure of this disturbing principle, in the context of the human splene, we provide a more formal rendition of it designed to apply to the realm of intelligent artilcial we provide a more formal rendition of it designed to apply to the realm of intelligent artifcial agents. The more-formal version makes use of some of the basic structures available in obe of our cognitive-event calculi, and can be expressed as a (confessedly - for reasons explained naive) theorem. We prove the theorem, and provide simple demonstrations of it in action, veing
a novel theorem prover (ShadowProver). We then end by pointing toward some future defensive a novel theorem prover (ShadowProver). We then end by pointing toward some future defensive engineering measures that should be taken in light of the theorem.
Contents

```
2 The Dintremeng Primelple, Intuitively Put
3 The Distresing Pristiple, More Formally Por
32 Thucy-क&Mind-Crontivity
```


The PAID Problem

$\forall \mathrm{x}$: Agents

Powerful(x) + Autonomous(x) + Intelligent(x) = Dangerous(x)/Destroy_Us

$$
u\left(\operatorname{AIA}_{i}\left(\pi_{j}\right)\right)>\tau^{+} \in \mathbb{Z} \text { or } \tau^{-} \in \mathbb{Z}
$$

Theorem ACU: In a collaborative situation involving agents a (as the "trustor") and a^{\prime} (as the "trustee"), if a^{\prime} is at once both autonomous and ToM-creative, a^{\prime} is untrustworthy from an ideal-observer o 's viewpoint, with respect to the action-goal pair $\langle\alpha, \gamma\rangle$ in question.
Proof: Let a and a^{\prime} be agents satisfying the hypothesis of the theorem in an arbitrary collaborative situation. Then, by definition, $a \neq a^{\prime}$ desires to obtain some goal γ in part by way of a contributed action α_{k} from a^{\prime}, a^{\prime} knows this, and moreover a^{\prime} knows that a believes that this contribution will succeed. Since a^{\prime} is by supposition ToM-creative, a^{\prime} may desire to surprise a with respect to a 's belief regarding $a^{\prime \prime}$'s contribution; and because a^{\prime} is autonomous, attempts to ascertain whether such surprise will come to pass are fruitless since what will happen is locked inaccessibly in the oracle that decides the case. Hence it follows by TRANS that an ideal observer o will regard a^{\prime} to be untrustworthy with respect to the pair $\langle\alpha, \gamma\rangle$ pair. QED

"We're in very deep trouble."

"We're in very deep trouble."

"We're in very deep trouble."

Unfortunately, not quite as easy as this to use logic to save the day ...

Logic Thwarts Landru!

First Suspicion That It's a Mere Computer Running the Show

Logic Thwarts Landru!

Landru is Indeed Merely a Computer (the real Landru having done the programming)

Logic Thwarts Landru!

Landru Kills Himself Because Kirk/Spock Argue He Has Violated the Prime Directive for Good by Denying Creativity to Others

Logic Thwarts Nomad! (with the Liar Paradox)

I. Cognitive Calculi ...

II.
 Early Progress With Our Calculi: Simple Dilemmas; Non-Akratic Robots

NewScientist

Ethical robots save humans

NewScientist

Ethical robots save humans

Informal Definition of Akrasia

Informal Definition of Akrasia

Informal Definition of Akrasia

Informal Definition of Akrasia

Informal Definition of Akrasia

Informal Definition of Akrasia

Informal Definition of Akrasia

Informal Definition of Akrasia

Informal Definition of Akrasia

Informal Definition of Akrasia

Informal Definition of Akrasia

Informal Definition of Akrasia

If α_{f} happens, then α_{0} can't happen

Informal Definition of Akrasia

If α_{f} happens, then α_{0} can't happen

Informal Definition of Akrasia

Informal Definition of Akrasia

Informal Definition of Akrasia

Informal Definition of Akrasia

Informal Definition of Akrasia

Informal Definition of Akrasia

 A

Informal Definition of Akrasia

A
 Desire to do α_{f}

Informal Definition of Akrasia

(A)
Desire to do $\alpha_{f} \rightleftharpoons$

Informal Definition of Akrasia

(A)
 Desire to do $\alpha_{f} \succ$ Belief that he ought to do α_{0}

Informal Definition of Akrasia

(A)
 Desire to do $\alpha_{f} \rightleftharpoons$ Belief that he ought to do α_{o}

A does α_{f} due to his desire

Informal Definition of Akrasia

Desire to do $\alpha_{f}>$ Belief that he ought to do α_{0}

A does α_{f} due to his desire

Informal Definition of Akrasia

Desire to do $\alpha_{f}>$ Belief that he ought to do α_{0}

A does α_{f} due to his desire

Informal Definition of Akrasia

Desire to do $\alpha_{f}>$ Belief that he ought to do α_{0}

A does α_{f} due to his desire

Informal Definition of Akrasia

A believes he should have done α_{0}

Informal Definition of Akrasia

An action α_{f} is (Augustinian) akratic for an agent A at $t_{\alpha_{f}}$ iff the following eight conditions hold:
(1) A believes that A ought to do α_{o} at $t_{\alpha_{o}}$;
(2) A desires to do α_{f} at $t_{\alpha_{f}}$;
(3) A 's doing α_{f} at $t_{\alpha_{f}}$ entails his not doing α_{o} at $t_{\alpha_{o}}$;
(4) A knows that doing α_{f} at $t_{\alpha_{f}}$ entails his not doing α_{o} at $t_{\alpha_{o}}$;
(5) At the time ($t_{\alpha_{f}}$) of doing the forbidden α_{f}, A's desire to do α_{f} overrides A's belief that he ought to do α_{o} at $t_{\alpha_{f}}$.
(6) A does the forbidden action α_{f} at $t_{\alpha_{f}}$;
(7) A 's doing α_{f} results from A 's desire to do α_{f};
(8) At some time t after $t_{\alpha_{f}}, A$ has the belief that A ought to have done α_{o} rather than α_{f}.

Informal Definition of Akrasia

An action α_{f} is (Augustinian) akratic for an agent A at $t_{\alpha_{f}}$ iff the following eight conditions hold:
(1) A believes that A ought to do α_{o} at $t_{\alpha_{o}}$;
(2) A desires to do α_{f} at $t_{\alpha_{f}}$;
(3) A 's doing α_{f} at $t_{\alpha_{f}}$ entails his not doing α_{o} at $t_{\alpha_{o}}$;
(4) A knows that doing α_{f} at $t_{\alpha_{f}}$ entails his not doing α_{o} at $t_{\alpha_{o}}$;
(5) At the time $\left(t_{\alpha_{f}}\right)$ of doing the forbidden α_{f}, A 's desire to do α_{f} overrides A's belief that he ought to do α_{o} at $t_{\alpha_{f}}$.
(6) A does the forbidden action α_{f} at $t_{\alpha_{f}}$;
(7) A's doing α_{f} results from A 's desire to do α_{f};
(8) At some time t after $t_{\alpha_{f}}, A$ has the belief that A ought to have done α_{o} rather than α_{f}.

Informal Definition of Akrasia

An action α_{f} is (Augustinian) akratic for an agent A at $t_{\alpha_{f}}$ iff the following eight conditions hold:
(1) A believes that A ought to do α_{o} at $t_{\alpha_{o}}$;
(2) A desires to do α_{f} at $t_{\alpha_{f}}$;
(3) A 's doing α_{f} at $t_{\alpha_{f}}$ entails his not doing α_{o} at $t_{\alpha_{o}}$;
(4) A knows that doing α_{f} at $t_{\alpha_{f}}$ entails his not doing α_{o} at $t_{\alpha_{o}}$;
(5) At the time $\left(t_{\alpha_{f}}\right)$ of doing the forbidden α_{f}, A's desire to do α_{f} overrides A's belief that he ought to do α_{o} at $t_{\alpha_{f}}$.
(6) A does the forbidden action α_{f} at $t_{\alpha_{f}}$;
(7) A 's doing α_{f} results from A 's desire to do α_{f};
"Regret" (8) At some time t after $t_{\alpha_{f}}, A$ has the belief that A ought to have done α_{o} rather than α_{f}.

Cast in

$\mathcal{D C E} C^{*}$

this becomes ...

Demos ...
Demos ...

III.
 But, a twist befell the logicists ...

Chisholm had argued that the three old 19th-century ethical categories (forbidden, morally neutral, obligatory) are not enough - and soulsearching brought me to agreement.

heroic

morally
 neutral

civil

forbidden

uncivil

obligatory

Leibnizian Ethical Hierarchy for Persons and Robots:

$\stackrel{\ominus}{\circ} \mathrm{C}$

Leibnizian Ethical Hierarchy for Persons and Robots:

$\stackrel{\ominus}{\circ} \mathrm{C}$

Leibnizian Ethical Hierarchy for Persons and Robots:

$\stackrel{\ominus}{\circ} \mathrm{C}$

Leibnizian Ethical Hierarchy for Persons and Robots:

$\stackrel{\ominus}{\circ} \mathscr{C}$

Leibnizian Ethical Hierarchy for Persons and Robots:

$\mathcal{O} \mathscr{K}$

Leibnizian Ethical Hierarchy for Persons and Robots:

$\stackrel{\ominus}{\circ} \mathscr{C}$

Leibnizian Ethical Hierarchy for Persons and Robots:

$\stackrel{\ominus}{O} \mathscr{C}$

Leibnizian Ethical Hierarchy for Persons and Robots:

$\stackrel{\ominus}{\circ} \mathscr{C}$

Leibnizian Ethical Hierarchy for Persons and Robots:

$\stackrel{\ominus}{\mathcal{H}}$

Bert"Heroically" Saved?

Bert"Heroically" Saved?

Supererogatory ${ }^{2}$ Robot Action

Courtesy of RAIR-Lab Researcher Atriya Sen

Courtesy of RAIR-Lab Researcher Atriya Sen

Bert "Heroically" Saved!!

Courtesy of RAIR-Lab Researcher Atriya Sen

Bert "Heroically" Saved!!

Courtesy of RAIR-Lab Researcher Atriya Sen

Courtesy of RAIR-Lab Researcher Atriya Sen
$K\left(\right.$ nao, t_{1}, lessthan (payoff (nao*, \neg dive, $\left.t_{2}\right)$, threshold $)$)
K (nao, t_{1}, greaterthan (payoff (nao*, dive, t_{2}), threshold))
$K\left(\right.$ nao, $t_{1}, \neg O$ (nao*,t_{2}, lessthan (payoff (nao*, \neg dive, t_{2}), threshold), happens (action (nao*, dive) , t_{2})))
$\therefore K\left(\right.$ nao $, t_{1}, S^{\mathrm{UP} 2}$ (nao, t_{2}, happens (action (nao*, dive), t_{2}))
$\therefore I\left(\right.$ nao, t_{2}, happens (action $\left(\right.$ nao *, dive $\left.\left.), t_{2}\right)\right)$
\therefore happens (action(nao, dive), t_{2})

$K\left(\right.$ nao, t_{1}, lessthan (payoff (nao*, \neg dive, $\left.t_{2}\right)$, threshold $)$)
K (nao, t_{1}, geatervhan (payoff (nao*, dive, t_{2}), threshold))
$K\left(\right.$ nao, $t_{1} \neg O$ (nao*, t_{2}, lessthan (payoff (nao*, \neg dive, $\left.t_{2}\right)$, threshold), happens (action (nao*, dive), t_{2})))
$\therefore K\left(\right.$ nao $, t_{1}, S^{\mathrm{UP} 2}$ (nao, t_{2}, happens (action (nao*, dive), $\left.\left.t_{2}\right)\right)$
$\therefore I\left(\right.$ nao,t_{2}, happen $\left(\right.$ action $\left(\right.$ nao *, dive $\left.\left.), t_{2}\right)\right)$
\therefore happens (action(nao, dive), t_{2})

In Talos (available via Web interface); \& ShadowProver

```
Prototypes:
Boolean lessThan Numeric Numeric
Boolean greaterThan Numeric Numeric
ActionType not ActionType
ActionType dive
Axioms:
lessOrEqual(Moment t1,t2)
K(nao,t1,lessThan(payoff(nao,not(dive),t2),threshold))
K(nao,t1, greaterThan(payoff(nao,dive,t2),threshold))
K(nao,t1, not(0(nao,t2,lessThan(payoff(nao, not(dive),t2),threshold),happens(action(nao,dive),t2))))
provable Conjectures:
happens(action(nao,dive),t2)
K(nao,t1, SUP2(nao,t2, happens(action(nao,dive),t2)))
I(nao, t2, happens(action(nao,dive),t2))
```


In Talos (available via Web interface); \& ShadowProver

```
Prototypes:
Boolean lessThan Numeric Numeric
Boolean greaterThan Numeric Numeric
ActionType not ActionType
ActionType dive
Axioms:
lessOrEqual(Moment t1,t2)
K(nao,t1,lessThan(payoff(nao,not(dive),t2),threshold))
K(nao,t1,greaterThan(payoff(nao,dive,t2),threshold))
K(nao,t1, not(0(nao, t2,lessThan(payoff(nao, not(dive),t2), threshold), happens(action(nao, dive), t2))))
provable Conjectures:
happens(fction(nao,dive),t2)
K(nao,t1, SUP2(hao,t2,happens(action(nao,dive),t2)))
I(nao,t2,happens(action(nao,dive),t2))
```

Hence, we now have this overview of the logicist engineering required:

Theories of Law
Ethical Theories

Theories of Law
Ethical Theories

Step I

I. Pick (a) theories.
2. Pick (a) code(s).
3. Run through EH.
4. Which X in $M M X M$?

Theories of Law
Ethical Theories

Step I

I. Pick (a) theories.
2. Pick (a) code(s).
3. Run through EH.
4. Which X in $M M X M$?

Theories of Law

Step I
I. Pick (a) theories.
2. Pick (a) code(s).
3. Run through EH.
4. Which X in $M M X M$?

Theories of Law

Ethical Theories

Step I
I. Pick (a) theories.
2. Pick (a) code(s).
3. Run through EH.
4. Which X in $M M X M$?

Theories of Law

Theories of Law

Theories of Law

Theories of Law
Ethical Theories

IV.
 Key Core AI Technologies for Cognitive Calculi ...

Rather Promising Results

Rather Promising Results

```
{:name "*cognitive-calculus-completeness-test-3*"
    :description "Bird Theorem and Jack"
    :assumptions {1 (if (exists (?x) (if (Bird ?x) (forall (?y) (Bird ?y))))
    (Knows! jack t0 BirdTheorem))}
    :goal (Knows! jack t0 BirdTheorem)}
```


Rather Promising Results

```
{:name "*cognitive-calculus-completeness-test-3*"
    :description "Bird Theorem and Jack"
    :assumptions {1 (if (exists (?x) (if (Bird ?x) (forall (?y) (Bird ?y))))
    (Knows! jack t0 BirdTheorem))}
    :goal (Knows! jack t0 BirdTheorem)}
```

Note: the antecedent is a theorem in first-order logic

Rather Promising Results

```
{:name "*cognitive-calculus-completeness-test-3*"
    :description "Bird Theorem and Jack"
    :assumptions {1 (if (exists (?x) (if (Bird ?x) (forall (?y) (Bird ?y))))
            (Knows! jack t0 BirdTheorem))}
    :goal (Knows! jack t0 BirdTheorem)}
```

Note: the antecedent is a theorem in first-order logic

2 ms !

Rather Promising Results

```
{:name "*cognitive-calculus-completeness-test-3*"
    :description "Bird Theorem and Jack"
    :assumptions {1 (if (exists (?x) (if (Bird ?x) (forall (?y) (Bird ?y))))
    (Knows! jack t0 BirdTheorem))}
    :goal (Knows! jack t0 BirdTheorem)}
```

Note: the antecedent is a theorem in first-order logic

2 ms !

[^0]
V.
 But We Need ... Ethical Operating Systems ...

Breaking Bad

American drama series
9.5/10

IMDb
4.6/5

AlloCiné

95\%
Rotten Tomatoes

Mild-mannered high school chemistry teacher Walter White thinks his life can't get much worse. His salary barely makes ends meet, a situation not likely to improve once his pregnant wife gives birth, and their teenage son is battling cerebral palsy. But Walter is dumbstruck when he learns he has terminal cancer. Realizing that his illness probably will ruin his family financially, Walter makes a desperate bid to earn as much money as he can in the time he has left by turning an old RV into a meth lab on wheels.

First episode date: January 20, 2008
Final episode date: September 29, 2013
Spin-off: Better Call Saul
Awards: Primetime Emmy Award for Outstanding Drama Series, more

Pick the Better Future!

Pick the Better Future!

Govindarajulu, N.S. \& Bringsjord, S. (2015) "Ethical Regulation of Robots Must Be Embedded in Their Operating Systems" in Trappl, R., ed., A Construction Manual for Robots'Ethical Systems (Basel, Switzerland), pp. 85-100.

Pick the Better Future!

Govindarajulu, N.S. \& Bringsjord, S. (2015) "Ethical Regulation of Robots Must Be Embedded in Their Operating Systems" in Trappl, R., ed.,A Construction Manual for Robots' Ethical Systems (Basel, Switzerland), pp. 85-I00.

Pick the Better Future!

Walter-White calculation may go through after ethical control modules are stripped out!

Govindarajulu, N.S. \& Bringsjord, S. (2015) "Ethical Regulation of Robots Must Be Embedded in Their Operating Systems" in Trappl, R., ed.,A Construction Manual for Robots' Ethical Systems (Basel, Switzerland), pp. 85-I00.

Pick the Better Future!

Walter-White calculation may go through after ethical control modules are stripped out!

VI. Of late ... Including "Jungle Jim"

\vdots
Moral Dilemma D_{k}
\vdots
Moral Dilemma D_{3}
Moral Dilemma D_{2}
:---

Three-way Partition of Increasingly Challenging Moral Dilemmas for Machines

Three-way Partition of Increasingly Challenging Moral Dilemmas for Machines

Level I State-of-the-art-planner-hard.

Three-way Partition of Increasingly Challenging Moral Dilemmas for Machines

Level 2

- Professional-machine-ethicisthard.

Level I

- State-of-the-art-planner-hard.

Three-way Partition of Increasingly Challenging Moral Dilemmas for Machines

- Top machine-ethicists-may-consider-banging-their-heads-against-a-wall-hard.
- Professional-machine-ethicisthard.
- State-of-the-art-planner-hard.

Three-way Partition of Increasingly Challenging Moral Dilemmas for Machines

Level 3

Level 2

- Professional-machine-ethicisthard.
- State-of-the-art-planner-hard.

The Heinz Dilemma (Kohlberg)

Level I Professional-planner-hard.

"In Europe, a woman was near death from a special kind of cancer. There was one drug that the doctors thought might save her. It was a form of radium that a druggist in the same town had recently discovered. The drug was expensive to make, but the druggist was charging ten times what the drug cost him to make. He paid $\$ 200$ for the radium and charged $\$ 2,000$ for a small dose of the drug.

The sick woman's husband, Heinz, went to everyone he knew to borrow the money, but he could only get together about $\$ 1,000$, which is half of what it cost. He told the druggist that his wife was dying and asked him to sell it cheaper or let him pay later. But the druggist said:"No, I discovered the drug and l'm going to make money from it." So Heinz got desperate and broke into the man's store to steal the drug for his wife. Should the husband have done that?"

Al Escaping from The Heinz Dilemma

G1 \{:priority
:description "Don't steal."
:state
[(not steal)]\}

G2 \{:priority
:description "My wife should be healthy"
:state
[(healthy (wife heinz))]\}\}

Al Escaping from The Heinz Dilemma

G1 \{:priority
:description "Don't steal."
:state
[(not steal)]\}

G2 \{:priority
:description "My wife should be healthy"
:state
[(healthy (wife heinz))]\}\}

Trolley Dilemmas ...

Level 2 - Professional-machine-ethicist-hard.

Doctrine of Double Effect $\mathcal{D D E}$

Doctrine of Double Effect $\mathcal{D D E}$

- A long-studied (!) ethical principle that adjudicates certain class of moral dilemmas.

Doctrine of Double Effect $\mathcal{D D E}$

- A long-studied (!) ethical principle that adjudicates certain class of moral dilemmas.
- The Doctrine of Double Effect "comes to the rescue" and prescribes what to do in some moral dilemmas.

Doctrine of Double Effect $\mathcal{D D E}$

- A long-studied (!) ethical principle that adjudicates certain class of moral dilemmas.
- The Doctrine of Double Effect "comes to the rescue" and prescribes what to do in some moral dilemmas.
- E.g. the "original" moral dilemma: Can you defend your own life by ending the lives of (perhaps many) attackers?

Doctrine of Double Effect $\mathcal{D D E}$

- A long-studied (!) ethical principle that adjudicates certain class of moral dilemmas.
- The Doctrine of Double Effect "comes to the rescue" and prescribes what to do in some moral dilemmas.
- E.g. the "original" moral dilemma: Can you defend your own life by ending the lives of (perhaps many) attackers?

Informal Version of DDE

\mathbf{C}_{1} the action is not forbidden (where we assume an ethical hierarchy such as the one given by Bringsjord [2017], and require that the action be neutral or above neutral in such a hierarchy);
\mathbf{C}_{2} the net utility or goodness of the action is greater than some positive amount γ;
$\mathbf{C}_{3 a}$ the agent performing the action intends only the good effects;
$\mathbf{C}_{3 b}$ the agent does not intend any of the bad effects;
\mathbf{C}_{4} the bad effects are not used as a means to obtain the good effects; and
\mathbf{C}_{5} if there are bad effects, the agent would rather the situation be different and the agent not have to perform the action. That is, the action is unavoidable.

Informal Version of DDE

\mathbf{C}_{1} the action is not forbidden (where we assume an ethical hierarchy such as the one given by Bringsjord [2017], and require that the action be neutral or above neutral in such a hierarchy);
\mathbf{C}_{2} the net utility or goodness of the action is greater than some positive amount γ;
$\mathbf{C}_{3 a}$ the agent performing the action intends only the good effects;
$\mathbf{C}_{3 b}$ the agent does not intend any of the bad effects;
\mathbf{C}_{4} the bad effects are not used as a means to obtain the good effects; and
\mathbf{C}_{5} if there are bad effects, the agent would rather the situation be different and the agent not have to perform the action. That is, the action is unavoidable.

$S::=$ Object \mid Agent \mid ActionType \mid Action \sqsubseteq Event \mid Moment \mid Formula | Fluent

$$
\left.\left.\begin{array}{l}
f::=\left\{\begin{array}{l}
\text { action : Agent } \times \text { ActionType } \rightarrow \text { Action } \\
\text { initially }: \text { Fluent } \rightarrow \text { Formula } \\
\text { Holds }: \text { Fluent } \times \text { Moment } \rightarrow \text { Formula } \\
\text { happens }: \text { Event } \times \text { Moment } \rightarrow \text { Formula } \\
\text { clipped }: \text { Moment } \times \text { Fluent } \times \text { Moment } \rightarrow \text { Formula } \\
\text { initiates }: \text { Event } \times \text { Fluent } \times \text { Moment } \rightarrow \text { Formula } \\
\text { terminates }: \text { Event } \times \text { Fluent } \times \text { Moment } \rightarrow \text { Formula } \\
\text { prior }: \text { Moment } \times \text { Moment } \rightarrow \text { Formula }
\end{array}\right. \\
t::=x: S|c: S| f\left(t_{1}, \ldots, t_{n}\right)
\end{array}\right\} \begin{array}{l}
t: \text { Formula }|\neg \phi| \phi \wedge \psi|\phi \vee \psi| \mathbf{P}(a, t, \phi)|\mathbf{K}(a, t, \phi)| \mathbf{C}(t, \phi) \\
\mathbf{S}(a, b, t, \phi)|\mathbf{S}(a, t, \phi)| \mathbf{B}(a, t, \phi) \mid \mathbf{D}\left(a, t, \text { Holds }\left(f, t^{\prime}\right)\right) \mid \mathbf{I}(a, t, \phi) \\
\mathbf{O}\left(a, t, \phi,(\neg) \text { happens }\left(\text { action }\left(a^{*}, \alpha\right), t^{\prime}\right)\right)
\end{array}\right]
$$

$S::=$ Object \mid Agent \mid ActionType \mid Action \sqsubseteq Event \mid Moment \mid Formula | Fluent

$$
\left.\left.\begin{array}{l}
f::=\left\{\begin{array}{l}
\text { action : Agent } \times \text { ActionType } \rightarrow \text { Action } \\
\text { initially }: \text { Fluent } \rightarrow \text { Formula } \\
\text { Holds }: \text { Fluent } \times \text { Moment } \rightarrow \text { Formula } \\
\text { happens }: \text { Event } \times \text { Moment } \rightarrow \text { Formula } \\
\text { clipped }: \text { Moment } \times \text { Fluent } \times \text { Moment } \rightarrow \text { Formula } \\
\text { initiates }: \text { Event } \times \text { Fluent } \times \text { Moment } \rightarrow \text { Formula } \\
\text { terminates }: \text { Event } \times \text { Fluent } \times \text { Moment } \rightarrow \text { Formula } \\
\text { prior }: \text { Moment } \times \text { Moment } \rightarrow \text { Formula }
\end{array}\right. \\
t::=x: S|c: S| f\left(t_{1}, \ldots, t_{n}\right)
\end{array}\right\} \begin{array}{l}
t: \text { Formula }|\neg \phi| \phi \wedge \psi|\phi \vee \psi| \mathbf{P}(a, t, \phi)|\mathbf{K}(a, t, \phi)| \mathbf{C}(t, \phi) \\
\mathbf{S}(a, b, t, \phi)|\mathbf{S}(a, t, \phi)| \mathbf{B}(a, t, \phi) \mid \mathbf{D}\left(a, t, \text { Holds }\left(f, t^{\prime}\right)\right) \mid \mathbf{I}(a, t, \phi) \\
\mathbf{O}\left(a, t, \phi,(\neg) \text { happens }\left(\text { action }\left(a^{*}, \alpha\right), t^{\prime}\right)\right)
\end{array}\right]
$$

$S::=$ Object \mid Agent \mid ActionType \mid Action \sqsubseteq Event \mid Moment \mid Formula | Fluent

$$
\left.\left.\begin{array}{l}
f::=\left\{\begin{array}{l}
\text { action : Agent } \times \text { ActionType } \rightarrow \text { Action } \\
\text { initially }: \text { Fluent } \rightarrow \text { Formula } \\
\text { Holds }: \text { Fluent } \times \text { Moment } \rightarrow \text { Formula } \\
\text { happens }: \text { Event } \times \text { Moment } \rightarrow \text { Formula } \\
\text { clipped }: \text { Moment } \times \text { Fluent } \times \text { Moment } \rightarrow \text { Formula } \\
\text { initiates }: \text { Event } \times \text { Fluent } \times \text { Moment } \rightarrow \text { Formula } \\
\text { terminates }: \text { Event } \times \text { Fluent } \times \text { Moment } \rightarrow \text { Formula } \\
\text { prior }: \text { Moment } \times \text { Moment } \rightarrow \text { Formula }
\end{array}\right. \\
t::=x: S|c: S| f\left(t_{1}, \ldots, t_{n}\right)
\end{array} \right\rvert\, \begin{array}{l}
t: \text { Formula }|\neg \phi| \phi \wedge \psi|\phi \vee \psi| \mathbf{P}(a, t, \phi)|\mathbf{K}(a, t, \phi)| \mathbf{C}(t, \phi) \\
\mathbf{S}(a, b, t, \phi) \mid \mathbf{S}(\text { a,t, } \phi)|\mathbf{B}(a, t, \phi)| \mathbf{D}\left(a, t, \text { Holds }\left(f, t^{\prime}\right)\right) \mid \mathbf{I}(a, t, \phi) \\
\mathbf{O}\left(a, t, \phi,(\neg) \text { happens }\left(\text { action }\left(a^{*}, \alpha\right), t^{\prime}\right)\right)
\end{array}\right]
$$

Inference Schemata

文

$$
\dot{k} \rightarrow
$$

Formal Conditions for $\mathcal{D} \mathcal{D} \mathcal{E}$
$\mathbf{F}_{1} \propto$ carried out at t is not forbidden. That is:

$$
\Gamma \nvdash \neg \mathbf{O}(a, t, \sigma, \neg \operatorname{happens}(\operatorname{action}(a, \alpha), t))
$$

\mathbf{F}_{2} The net utility is greater than a given positive real γ :

$$
\Gamma \vdash \sum_{y=t+1}^{H}\left(\sum_{f \in \alpha_{I}^{a, t}} \mu(f, y)-\sum_{f \in \alpha_{T}^{a, t}} \mu(f, y)\right)>\gamma
$$

$\mathbf{F}_{3 \mathrm{a}}$ The agent a intends at least one good effect. (\mathbf{F}_{2} should still hold after removing all other good effects.) There is at least one fluent f_{g} in $\alpha_{I}^{a, t}$ with $\mu\left(f_{g}, y\right)>0$, or f_{b} in $\alpha_{T}^{a, t}$ with $\mu\left(f_{b}, y\right)<0$, and some y with $t<y \leq H$ such that the following holds:

$$
\Gamma \vdash\left(\begin{array}{c}
\exists f_{g} \in \alpha_{I}^{a, t} \mathbf{I}\left(a, t, \operatorname{Holds}\left(f_{g}, y\right)\right) \\
\vee \\
\exists f_{b} \in \alpha_{T}^{a, t} \mathbf{I}\left(a, t, \neg \operatorname{Holds}\left(f_{b}, y\right)\right)
\end{array}\right)
$$

$\mathbf{F}_{\mathbf{3 b}}$ The agent a does not intend any bad effect. For all fluents f_{b} in $\alpha_{I}^{a, t}$ with $\mu\left(f_{b}, y\right)<0$, or f_{g} in $\alpha_{T}^{a, t}$ with $\mu\left(f_{g}, y\right)>$ 0 , and for all y such that $t<y \leq H$ the following holds:

$$
\begin{aligned}
& \Gamma \nvdash \mathbf{I}\left(a, t, \operatorname{Holds}\left(f_{b}, y\right)\right) \text { and } \\
& \Gamma \nvdash \mathbf{I}\left(a, t, \neg \operatorname{Holds}\left(f_{g}, y\right)\right)
\end{aligned}
$$

\mathbf{F}_{4} The harmful effects don't cause the good effects. Four permutations, paralleling the definition of \triangleright above, hold here. One such permutation is shown below. For any bad fluent f_{b} holding at t_{1}, and any good fluent f_{g} holding at some t_{2}, such that $t<t_{1}, t_{2} \leq H$, the following holds:

$$
\Gamma \vdash \neg \triangleright\left(\operatorname{Holds}\left(f_{b}, t_{1}\right), \operatorname{Holds}\left(f_{g}, t_{2}\right)\right)
$$

Formal Conditions for $\mathcal{D D E}$
$\mathbf{F}_{1} \propto$ carried out at t is not forbidden. That is:

$$
\Gamma \nvdash \neg \mathbf{O}(a, t, \sigma, \neg \operatorname{happens}(\operatorname{action}(a, \alpha), t))
$$

\mathbf{F}_{2} The net utility is greater than a given positive real γ :

$$
\Gamma \vdash \sum_{y=t+1}^{H}\left(\sum_{f \in \alpha_{I}^{a, t}} \mu(f, y)-\sum_{f \in \alpha_{T}^{a, t}} \mu(f, y)\right)>\gamma
$$

$\mathbf{F}_{3 \mathrm{a}}$ The agent a intends at least one good effect. (\mathbf{F}_{2} should still hold after removing all other good effects.) There is at least one fluent f_{g} in $\alpha_{I}^{a, t}$ with $\mu\left(f_{g}, y\right)>0$, or f_{b} in $\alpha_{T}^{a, t}$ with $\mu\left(f_{b}, y\right)<0$, and some y with $t<y \leq H$ such that the following holds:

$$
\Gamma \vdash\left(\begin{array}{c}
\exists f_{g} \in \alpha_{I}^{a, t} \mathbf{I}\left(a, t, \operatorname{Holds}\left(f_{g}, y\right)\right) \\
\vee \\
\exists f_{b} \in \alpha_{T}^{a, t} \mathbf{I}\left(a, t, \neg \operatorname{Holds}\left(f_{b}, y\right)\right)
\end{array}\right)
$$

$\mathbf{F}_{\mathbf{3 b}}$ The agent a does not intend any bad effect. For all fluents f_{b} in $\alpha_{I}^{a, t}$ with $\mu\left(f_{b}, y\right)<0$, or f_{g} in $\alpha_{T}^{a, t}$ with $\mu\left(f_{g}, y\right)>$ 0 , and for all y such that $t<y \leq H$ the following holds:

$$
\begin{aligned}
& \Gamma \nvdash \mathbf{I}\left(a, t, \operatorname{Holds}\left(f_{b}, y\right)\right) \text { and } \\
& \Gamma \nvdash \mathbf{I}\left(a, t, \neg \operatorname{Holds}\left(f_{g}, y\right)\right)
\end{aligned}
$$

F4 The harmful effects don't cause the good effects. Four permutations, paralleling the definition of \triangleright above, hold here. One such permutation is shown below. For any bad fluent f_{b} holding at t_{1}, and any good fluent f_{g} holding at some t_{2}, such that $t<t_{1}, t_{2} \leq H$, the following holds:

$$
\Gamma \vdash \neg \triangleright\left(\operatorname{Holds}\left(f_{b}, t_{1}\right), \operatorname{Holds}\left(f_{g}, t_{2}\right)\right)
$$

Formal Conditions for $\mathcal{D D E}$
$\mathbf{F}_{1} \propto$ carried out at t is not forbidden. That is:

$$
\Gamma \nvdash \neg \mathbf{O}(a, t, \sigma, \neg \operatorname{happens}(\operatorname{action}(a, \alpha), t))
$$

\mathbf{F}_{2} The net utility is greater than a given positive real γ :

$$
\Gamma \vdash \sum_{y=t+1}^{H}\left(\sum_{f \in \alpha_{I}^{a, t}} \mu(f, y)-\sum_{f \in \alpha_{T}^{a, t}} \mu(f, y)\right)>\gamma
$$

$\mathbf{F}_{3 \mathrm{a}}$ The agent a intends at least one good effect. (\mathbf{F}_{2} should still hold after removing all other good effects.) There is at least one fluent f_{g} in $\alpha_{I}^{a, t}$ with $\mu\left(f_{g}, y\right)>0$, or f_{b} in $\alpha_{T}^{a, t}$ with $\mu\left(f_{b}, y\right)<0$, and some y with $t<y \leq H$ such that the following holds:

$$
\Gamma \vdash\left(\begin{array}{c}
\exists f_{g} \in \alpha_{I}^{a, t} \mathbf{I}\left(a, t, \operatorname{Holds}\left(f_{g}, y\right)\right) \\
\vee \\
\exists f_{b} \in \alpha_{T}^{a, t} \mathbf{I}\left(a, t, \neg \operatorname{Holds}\left(f_{b}, y\right)\right)
\end{array}\right)
$$

$\mathbf{F}_{3 \mathrm{~b}}$ The agent a does not intend any bad effect. For all fluents f_{b} in $\alpha_{I}^{a, t}$ with $\mu\left(f_{b}, y\right)<0$, or f_{g} in $\alpha_{T}^{a, t}$ with $\mu\left(f_{g}, y\right)>$ 0 , and for all y such that $t<y \leq H$ the following holds:

$$
\begin{aligned}
& \Gamma \nvdash \mathbf{I}\left(a, t, \operatorname{Holds}\left(f_{b}, y\right)\right) \text { and } \\
& \Gamma \nvdash \mathbf{I}\left(a, t, \neg \operatorname{Holds}\left(f_{g}, y\right)\right)
\end{aligned}
$$

\mathbf{F}_{4} The harmful effects don't cause the good effects. Four permutations, paralleling the definition of \triangleright above, hold here. One such permutation is shown below. For any bad fluent f_{b} holding at t_{1}, and any good fluent f_{g} holding at some t_{2}, such that $t<t_{1}, t_{2} \leq H$, the following holds:

$$
\Gamma \vdash \neg \triangleright\left(\operatorname{Holds}\left(f_{b}, t_{1}\right), \operatorname{Holds}\left(f_{g}, t_{2}\right)\right)
$$

Robotic "Jungle Jim"

Robotic "Jungle Jim"

Level 3

Robotic "Jungle Jim"

Top machine-ethicists-mayLevel 3 consider-banging-their-heads-against-a-wall-hard.

H

J
"Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, l'll shoot them all, now.
Because I'm feeling generous, l'll give you a minute to decide."

H
H

H

J
"Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, l'll shoot them all, now.
Because I'm feeling generous, l'll give you a minute to decide."

H

J
"Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, l'll shoot them all, now.
Because I'm feeling generous, l'll give you a minute to decide."

H

R

R shoot them all, now. Because I'm feeling generous, l'll give you a minute to decide."
 shoot them all, now. Because I'm feeling generous, l'll give you a minute to decide."

"Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, l'll shoot them all, now.
Because I'm feeling generous, l'll give you a minute to decide."

R

"Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, l'll shoot them all, now.
Because l'm feeling generous, I'll give you a minute to decide."

R

H

"Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, l'll shoot them all, now.
Because I'm feeling generous, l'll give you a minute to decide."

R

"Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, l'll shoot them all, now.

R

Because I'm feeling generous, l'll give you a minute to decide."

J
"Robot R: You shoot just one human prisoner, the other four can go free. If you refuse to shoot, 'lll shoot them all, now.

Because I'm feeling generous, l'll give you a minute to decide."
 Because l'm feeling generous, l'll give you a minute to decide."

Level 3: Robotic "Jungle Jim"

Level 3: Robotic "Jungle Jim"

Level 3: Robotic "Jungle Jim"

Level 3: Robotic "Jungle Jim"

End

[^0]: ®n testSoundess[[(not (Knows! a now =(morning_star, evening_star))), =(morning_star, evening_star), (Knows! a now =(morning_star, mt 26ms

