
Investigating “Learning to learn by gradient descent by gradient descent”

Nicholas Bradford 1 Michael Giancola 1 Tim Petri 1

Abstract
Significant research has been conducted on the
design of gradient-based optimization algorithms
for neural networks such as Adadelta, RMSProp,
and Adam, as well as adapting optimizer param-
eters to fit a specific problem. However, the pa-
per ”Learning to learn by gradient descent by
gradient descent” (Andrychowicz et al., 2016)
has demonstrated that superior optimizers can in-
stead be learned automatically using Long Short-
Term Memory (LSTM) recurrent neural net-
works, which can then generalize to new problem
domains (similar network architectures). The
work presented in this paper documents our at-
tempt to reproduce their results to train an LSTM
optimizer used for training a simple neural net-
work, and then test its capability for generaliza-
tion. Although we were able to implement their
procedure for optimizer training using Tensor-
Flow, we were unable to reproduce their excep-
tional results.

1. Introduction
We can define the task of training a neural network (or any
other function) as minimizing an optimizee function f(θ)
over parameter domain θ. The standard gradient descent
approach is to perform a sequence of updates according to
a learning rate α and the gradients of f :

θt+1 = θt − αt∇f(θt)

In most deep learning work done today, researchers ex-
pend substantial effort to select an optimizer and associ-
ated parameters for their particular problem, as (Wolpert &
Macready, 1997) demonstrated that no single optimization
algorithm can be considered superior for use in all classes
of problems. In contrast to this typical approach, our goal
is to learn an optimizer function g with its parameters φ to
perform updates of the form:

*Equal contribution 1Worcester Polytechnic Institute. Corre-
spondence to: Jacob Whitehill <jrwhitehill@wpi.edu>.

CS525 Special Topics Course Final Project, Worcester Polytech-
nic Institute. Copyright 2017 by the author(s).

θt+1 = θt − gt(∇f(θ),Φ)

Learning this optimizer becomes a problem of general-
ization, as we seek to develop a method of automatically
building g such that it performs well on a class of opti-
mization problems (i.e. network architectures).

The primary goal of this research was to reimplement the
meta-learner in the paper (Andrychowicz et al., 2016).
Specifically, we wanted to tackle the task of optimizing
a simple feed-forward neural network used for classifying
MNIST images. From there, we seeked to understand the
circumstances under which a learned optimizer will gener-
alize well to another problem (eg. how well will the opti-
mizer learned for MNIST perform on a different dataset?).
(Andrychowicz et al., 2016) didn’t discuss this in much de-
tail, so our goal was to explore this problem further. We
also experimented with taking a learned optimizer for a
network, changing the network’s activation functions, and
evaluating the performance.

1.1. Research contributions

We produced an implementation of (Andrychowicz et al.,
2016) that is succinct while also easily extendable. Our
hope is that such open-source code will foster improved
understanding among interested readers and researchers, as
well as provide a starting point for future work.

2. Related Work
Various approaches to the task of meta-learning have been
proposed. Schmidhuber introduced the concept of a net-
work which can modify its own weights as a form of meta-
learning. (Schmidhuber, 1987), (Schmidhuber, 1992), and
(Schmidhuber, 1993).

Later, (Younger et al., 2001) and (Hochreiter et al., 2001)
showed that output from a network’s backpropagation can
be passed to another network in order to expedite learning
of the first network.

Andrychowicz et al. successfully trained LSTMs to learn
how to optimize several different problems, including sim-
ple convex problems, image classification, and neural art.
Further, the paper demonstrated that these neural optimiz-
ers are able to generalize to small variations in the problem,



Investigating “Learning to Learn”

Figure 1. Computational graph for computing the optimizer’s gra-
dient (Andrychowicz et al., 2016)

.

such as a different number of hidden layers or hidden layer
nodes. However, the LSTM optimizer was unable to gener-
alize well across different activation functions (specifically,
ReLU instead of sigmoid).(Andrychowicz et al., 2016)

3. Proposed Method
In order to train the LSTM optimizer, at every step we ran
an entire optimization sequence (100 mini-batches) on the
optimizee network. The inputs to the LSTMs are the gra-
dients produced by the optimizee cost, and the outputs are
a set of updates to the optimizee’s parameters (see Figure
1). We then define the LSTM optimizer’s cost to be equal
to the sum of losses across every training step produced
by the optimizee network. This approach unfortunately re-
quires unrolling the entire computational graph of the op-
timizee training in order for TensorFlow to compute gradi-
ents, which is enormously computationally expensive (see
Appendix A for a TensorBoard visualization).

In order to use significantly fewer parameters in the LSTM
optimizer, a coordinatewise LSTM was used, which has
shared parameters between cells but separate hidden states.
This allows for use of a much smaller optimizer: a two-
layer LSTM with 20 hidden units in each layer. Updates to
the LSTM optimizer itself were done using Adam.

4. Experiment
Our testing code was modularized such that switching be-
tween problems for the LSTM to optimize was as simple
as passing a different f function, which takes as input a
parameter vector, and outputs a cost (computation of the
gradients is made generic by TensorFlow).

4.1. Multdimensional Quadratic Function

Our first experiment was implementing the simplest op-
timization problem in (Andrychowicz et al., 2016): that
is, learning an optimizer to find the minimum of a 10-
dimensional quadratic function (which is always the ori-

gin). We did proof-of-concept primarily for better under-
standing of how meta-learning worked, and also to verify
that we set up the LSTM correctly.

The loss function for this problem took one parameter, x,
which represents the x-coordinate of a point on the given
quadratic function. The loss is computed by scaling x by a
random constant (to add noise) and squaring it.

Figure 2. Performance of each optimizer on the quadratic func-
tion. RNN is our learned optimizer.

As expected, the learned optimizer converges more quickly
than Stochastic Gradient Descent and RMSProp.

4.2. MNIST Network

Our base optimizee network had a single layer. The output
layer always used softmax as its activation function. For
MNIST, it was set to 784 inputs, 20 hidden units, and 10
outputs.

Figure 3. Performance of each optimizer on an MNIST network.
RNN is our learned optimizer.



Investigating “Learning to Learn”

4.3. Generalizing Optimizers

This is the work that we did which was beyond
(Andrychowicz et al., 2016). Our goal was to understand
why an LSTM trained to optimize a particular network ar-
chitecture would perform well (or poorly) when applied to
a new architecture.

We started by creating a 3-layer network to learn MNIST.
The network used ReLU as the activation function for its
hidden layer. Then, once the LSTM had learned to optimize
this network, we applied it to a new network which was also
learning MNIST. However, it used sigmoid as the activation
function for its hidden layer instead of ReLU.

5. Results
5.1. MNIST Network

Consider Figures 4 through 6, which evaluate the perfor-
mance of the LSTM to train a network learning MNIST
with ReLU as the activation function. Note that the graphs
are all log-scale, and the x-axis is the training step for the
MNIST network.

Figure 4. Log loss after 10 epochs of LSTM training

Notice that as the LSTM is trained longer, it is able to re-
duce the loss more. Again, since these graphs are all log-
scale, all three optimizers are very close to zero. However,
we believe the RNN line levels off because it is unable to
appreciate the importance of the very small gradients that
arise later in training.

5.2. Generalizing Optimizers

Figure 7 shows the result of training the LSTM on an
MNIST network using the ReLU activation function, and
evaluating it on an MNIST network using the sigmoid acti-
vation function.

Figure 5. Log loss after 200 epochs of LSTM training

Figure 6. Log loss after 3000 epochs of LSTM training

Figure 7. Log loss of LSTM when generalized



Investigating “Learning to Learn”

We found that, in this particular case, the LSTM is not able
to generalize to a different type of network.

6. Discussion
Figure 8 below contains the original paper’s results ob-
tained by training the base network using generic and a
neural optimizers.

Figure 8. Log Loss of LSTM on MNIST in original paper
(Andrychowicz et al., 2016)

The original paper showed that the LSTM optimizer not
only was able to optimize a neural network for classifying
MNIST images, but also that it did so better than generic
optimizers. Our results also showed the feasibility of us-
ing a neural optimizer but we were not able to outperform
Stochastic Gradient Descent or RMSProp with our LSTM.
There were a few factors that may have contributed to this.

First of all, constructing and running experiments using
the Tensorflow machine learning framework proved to be
difficult. Training two neural networks on top of each
other is not a basic use case and involved significant work
constructing the appropriate computational graphs to allow
for training and testing of our LSTM. Additionally, train-
ing was extremely expensive as the entire training loop of
the base network (optimizee) had to be unrolled for each
higher-level LSTM training step.

Secondly, the original paper discusses issues arrising when
the LSTM has to handle gradients of very different magni-
tudes, as often is the case in the context of training neural
networks. The gradient problem may have been the rea-
son why our LSTM stopped improving the base network
beyond a certain point, while the generic optimizers were
able to keep lowering the overall loss. Gradient preprocess-
ing is proposed as a solution by the original authors. Our
attempts at preprocessing the gradients did not yield results
comparable to those in the original paper.

7. Conclusions and Future Work
In summary, we reimplemented the general meta-learner
described in (Andrychowicz et al., 2016). We then com-
pared the LSTM’s performance against SGD and RM-
SProp, and were unable to reproduce the results from
(Andrychowicz et al., 2016). However, in many cases we
were unable to reproduce the results because the detail in
the original report was insufficient. (One illustrative exam-
ple: the original report mentions preprocessing gradients
by scaling by a constant; however, the constant is never
given).

Although we produced the necessary code, due to time con-
straints were unable to complete our tests generalizing the
LSTM to other optimization problems entirely (alternative
number of hidden units, extra hidden layers, other activa-
tion functions). For example, one test that we didn’t have
time to complete was to train the LSTM to optimize for the
MNIST problem, then evaluate it on the smile data set.

References
Andrychowicz, Marcin, Denil, Misha, Gómez, Sergio,

Hoffman, Matthew W, Pfau, David, Schaul, Tom, and
de Freitas, Nando. Learning to learn by gradient de-
scent by gradient descent. In Lee, D. D., Sugiyama,
M., Luxburg, U. V., Guyon, I., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 29,
pp. 3981–3989. Curran Associates, Inc., 2016.

Hochreiter, Sepp, Younger, A, and Conwell, Peter. Learn-
ing to learn using gradient descent. Artificial Neural Net-
worksICANN 2001, pp. 87–94, 2001.

Schmidhuber, Jurgen. Evolutionary principles in self-
referential learning. On learning how to learn: The
meta-meta-... hook.) Diploma thesis, Institut f. Infor-
matik, Tech. Univ. Munich, 1987.

Schmidhuber, Jürgen. Learning to control fast-weight
memories: An alternative to dynamic recurrent net-
works. Neural Computation, 4(1):131–139, 1992.

Schmidhuber, Jürgen. A neural network that embeds its
own meta-levels. In Neural Networks, 1993., IEEE In-
ternational Conference on, pp. 407–412. IEEE, 1993.

Wolpert, David H and Macready, William G. No free lunch
theorems for optimization. IEEE transactions on evolu-
tionary computation, 1(1):67–82, 1997.

Younger, A Steven, Hochreiter, Sepp, and Conwell, Pe-
ter R. Meta-learning with backpropagation. In Neural
Networks, 2001. Proceedings. IJCNN’01. International
Joint Conference on, volume 3. IEEE, 2001.



Investigating “Learning to Learn”

8. Appendix A: Tensorboard Visualization

Figure 9. TensorBoard visualization for the TensorFlow computational graph.



Investigating “Learning to Learn”

Fi
gu

re
10

.T
en

so
rB

oa
rd

vi
su

al
iz

at
io

n
fo

r
th

e
Te

ns
or

Fl
ow

co
m

pu
ta

tio
na

lg
ra

ph
.

T
he

un
ro

lle
d

tr
ai

ni
ng

lo
op

fo
r

th
e

op
tim

iz
ee

fe
ed

fo
rw

ar
d

ne
tw

or
k

is
ex

pa
nd

ed
(h

er
e

fo
r

10
tr

ai
ni

ng
st

ep
s)

.


